Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Tang Qiuhua, Li Jie, Zhou Xinghua, Lu Kai, Zhang Zhixun. Seabed sonar image analysis and acoustic seabed classification in the south of the Cheju Island[J]. Haiyang Xuebao, 2014, 36(7): 133-141. doi: 10.3969/j.issn.0253-4193.2014.04.015
Citation: Tang Qiuhua, Li Jie, Zhou Xinghua, Lu Kai, Zhang Zhixun. Seabed sonar image analysis and acoustic seabed classification in the south of the Cheju Island[J]. Haiyang Xuebao, 2014, 36(7): 133-141. doi: 10.3969/j.issn.0253-4193.2014.04.015

Seabed sonar image analysis and acoustic seabed classification in the south of the Cheju Island

doi: 10.3969/j.issn.0253-4193.2014.04.015
  • Received Date: 2013-04-23
  • Rev Recd Date: 2013-12-20
  • The selected area in this paper is located in the south of the Cheju Island. The study area is part of the Yellow Sea Trough extends to the Okinawa Trough and it's in the pathway of the Yellow Warm Current which is one of the branches of the Kuroshio Warm Current. Its seabed sonar image processing analysis and acoustic seabed classification research,contribute to a comprehensive understanding of the characteristics of the channel seabed bedforms surface texture and sediment distribution pattern. With the high-precision multibeam echo sounder sonar data in the research area,we apply image processing techniques and methods and get the seabed sonar image,then we can do quantitative description and analysis to the seabed surface texture features. Based on multibeam echo sounder backscatter strength data and 19 geological seabed sediment sample data,a statistical model which presents the relationship between seabed backscatter signal and sediment type is set up. Using improved Learning Vector Quantization neural network methods,a fast and accurate automatic identification for three seabed sediment types (TS,YS,STY) implementation is feasible.
  • loading
  • 朱永其, 曾成开, 冯韵. 东海陆架地貌特征[J]. 东海海洋, 1984, 2(2): 1-13.
    Yang C S. Active, moribund and buried tidal sand ridges in the East China Sea and the southern Yellow Sea[J]. Marine Geology, 1989, 88: 97-116.
    杨文达. 东海海底沙脊的结构及沉积环境[J]. 海洋地质与第四纪地质, 2002, 22(1): 9-16.
    刘振夏, 夏东兴. 中国近海潮流沉积沙体[M]. 北京: 海洋出版社, 2004.
    朱永其, 李承伊. 关于东海大陆架晚更新世最低海面[J]. 科学通报, 1979, 7: 317-320.
    朱永其, 曾成开, 金长茂. 东海大陆架晚更新世以来海平面变化[J]. 科学通报, 1981, 19:1195-1198.
    金翔龙. 东海海洋地质[M]. 北京: 海洋出版社, 1992.
    Liu Z X. Yangtze Shoal-a modern tidal sand sheet in the northwestern part of the East China Sea[J]. Marine Geology, 1997, 137: 321-330.
    Liu Z X, Berne S, Saito Y, et al. Internal architecture and mobility of tidal sand ridges in the East China Sea[J]. Continental Shelf Research, 2007, 27: 1820-1834.
    印萍. 东海陆架冰后期潮流沙脊地貌与内部结构特征[J]. 海洋科学进展, 2003, 21(2): 181-187.
    吴自银, 金翔龙, 李家彪, 等. 东海外陆架线状沙脊群[J]. 科学通报, 2006, 51(1): 93-103.
    吴自银, 金翔龙, 曹振轶, 等. 东海陆架两期沙脊的时空对比[J]. 海洋学报, 2009, 31(5): 69-79.
    Wu Z Y, Jin X L, Cao Z Y, et al. Distribution, formation and evolution of sand ridges on the East China Sea shelf[J]. Science in China:Series D, 2010, 53(1): 101-112.
    黄谟涛, 翟国君, 欧阳永忠, 等. 多波束与单波束测深数据的融合处理技术[J]. 测绘学报, 2001, 30(4): 299-303.
    阳凡林, 李家彪, 吴自银, 等. 浅水多波束勘测数据精细处理方法[J]. 测绘学报, 2008, 37(4): 444-450.
    阳凡林, 李家彪, 吴自银, 等. 多波束测深瞬时姿态误差的改正方法[J]. 测绘学报, 2009, 38(5): 450-456.
    吴自银, 金翔龙, 郑玉龙, 等. 多波束测深边缘波束误差的综合校正[J]. 海洋学报, 2005, 27(4): 88-94.
    刘忠臣, 刘保华, 黄振宗, 等. 中国近海及邻近海域地形地貌[M]. 北京: 海洋出版社, 2005.
    Guan B, Fang G. Winter counter-wind currents off the southeastern China coast: A review[J]. Journal of oceanography, 2006, 62(1): 1-24.
    李广雪, 杨子赓, 刘勇. 中国东部海域海底沉积环境成因研究: 中国东部海域海底沉积物成因环境图说明[M]. 北京: 科学出版社, 2005.
    李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008.
    唐秋华, 周兴华, 丁继胜, 等. 学习向量量化神经网络在多波束底质分类中的应用研究[J]. 武汉大学学报, 2006, 31(3): 229-232.
    唐秋华, 刘保华, 陈永奇, 等. 结合遗传算法的LVQ神经网络在声学底质分类中的应用[J]. 地球物理学报, 2007, 50(1): 313-319.
    Lurton X, Dugelay S, Augustin J M. Analysis of multibeam echo-sounder signals from the deep seafloor[C]//OCEANS94.Oceans Engineering for Today's Technology and Tomorrow's Preservation. IEEE, 1994, 3: Ⅲ/213-Ⅲ/218.
    Zietz S, Satriano J H, Geneva A. Development of a physically-based ocean bottom classification analysis system using multibeam sonar backscatter[C]//OCEANS'96. MTS/IEEE. Prospects for the 21st Century. Conference Proceedings. IEEE, 1996, 3: 1058-1063.
    Simrad. Instruction manual of simrad triton seabed classification[M]. Norway: Simrad Company, 1998.
    Goff J A, Olson H C, Duncan C S. Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey Margin[J]. Geo-Marine Letters, 2000, 20: 43-49.
    Gonidec Y L, Lamarche G, Wright I C. Inhomogeneous substrate analysis using EM300 backscatter imagery[J]. Marine Geophysical Research, 2003, 24: 311-327.
    Collier J S, Brown C J. Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments[J]. Marine Geology, 2005, 214: 431-449.
    Ferrini V L, Flood R D. The effects of fine-scale surface roughness and grain size on 300 kHz multibeam backscatter intensity in sandy marine sedimentary environments[J]. Marine Geology, 2006, 228: 153-172.
    De C, Chakraborty B. Estimation of mean grain size of seafloor sediments using neural network[J]. Marine Geophysical Research, 2012, 33: 45-53.
    Kohonen T. Self-Organizing Maps, 3rd Edition[M]. Berlin: Springer-Verlag, 2001.
    Holland J H. Adaptation in Natural and Artificial System[M]. Michigan: The University of Michigan Press, 1975.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1616) PDF downloads(880) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return