Citation: | Du Xianjun,Guo Hangfei,Cheng Shengyi. Multiscale attentional coding-dynamic decoding network for short-range precipitation nowcasting[J]. Haiyang Xuebao,2024, 46(x):1–13 doi: 10.12284/hyxb0000-00 |
[1] |
Chen Chengcheng, Zhang Qian, Kashani M H, et al. Forecast of rainfall distribution based on fixed sliding window long short-term memory[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 248−261. doi: 10.1080/19942060.2021.2009374
|
[2] |
Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. Montreal: MIT Press, 2015: 802−810.
|
[3] |
Shi Xingjian, Gao Zhihan, Lausen L, et al. Deep learning for precipitation nowcasting: a benchmark and a new model[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017: 5622−5632.
|
[4] |
Wang Yunbo, Long Mingsheng, Wang Jianmin, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 879−888.
|
[5] |
Wang Yunbo, Gao Zhifeng, Long Mingsheng, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm: PMLR, 2018: 5123−5132.
|
[6] |
Xue Fuzhao, Shi Ziji, Wei Futao, et al. Go wider instead of deeper[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence. AAAI, 2022: 8779−8787. (查阅网上资料, 未找到本条文献出版信息, 请确认)
|
[7] |
吴卓升, 张巍, 林艳, 等. 动态概率卷积神经网络在雷达回波外推中的应用[J]. 计算机应用研究, 2021, 38(7): 2125−2129.
Wu Zhuosheng, Zhang Wei, Lin Yan, et al. Application of dynamic probability convolutional neural network in radar echo extrapolation[J]. Application Research of Computers, 2021, 38(7): 2125−2129.
|
[8] |
Trebing K, Staǹczyk T, Mehrkanoon S. SmaAt-UNet: precipitation nowcasting using a small attention-UNet architecture[J]. Pattern Recognition Letters, 2021, 145: 178−186. doi: 10.1016/j.patrec.2021.01.036
|
[9] |
Chen Guoxing, Wang W C. Short-term precipitation prediction for contiguous United States using deep learning[J]. Geophysical Research Letters, 2022, 49(8): e2022GL097904. doi: 10.1029/2022GL097904
|
[10] |
Qiu Yunan, Lu Zhenyu, Fang Shanpu. A short-term precipitation prediction model based on spatiotemporal convolution network and ensemble empirical mode decomposition[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(4): 738−740. doi: 10.1109/JAS.2022.105479
|
[11] |
Ayzel G, Scheffer T, Heistermann M. RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting[J]. Geoscientific Model Development, 2020, 13(6): 2631−2644. doi: 10.5194/gmd-13-2631-2020
|
[12] |
曹伟华, 南刚强, 陈明轩, 等. 基于深度学习的京津冀地区精细尺度降水临近预报研究[J]. 气象学报, 2022, 80(4): 546−564.
Cao Weihua, Nan Gangqiang, Chen Mingxuan, et al. A study on fine scale precipitation nowcasting in Beijing-Tianjin-Hebei region based on deep learning[J]. Acta Meteorologica Sinica, 2022, 80(4): 546−564.
|
[13] |
Yang Shangsahng, Yuan Huiling. A customized multi-scale deep learning framework for storm nowcasting[J]. Geophysical Research Letters, 2023, 50(13): e2023GL103979. doi: 10.1029/2023GL103979
|
[14] |
Wu Hao, Liang Yuxuan, Xiong Wei, et al. Earthfarsser: versatile spatio-temporal dynamical systems modeling in one model[C]//Proceedings of the 38th AAAI Conference on Artificial Intelligence. AAAI, 2024: 15906−15914. (查阅网上资料, 未找到本条文献出版信息, 请确认)
|
[15] |
方巍, 庞林, 张飞鸿, 等. 对抗型长短期记忆网络的雷达回波外推算法[J]. 中国图象图形学报, 2021, 26(5): 1067−1080. doi: 10.11834/jig.200316
Fang Wei, Pang Lin, Zhang Feihong, et al. Radar echo extrapolation algorithm based on adversarial long short-term memory network[J]. Journal of Image and Graphics, 2021, 26(5): 1067−1080 doi: 10.11834/jig.200316
|
[16] |
Yu Wenbin, Wang Suxun, Zhang Chengjun, et al. Integrating spatio-temporal and generative adversarial networks for enhanced nowcasting performance[J]. Remote Sensing, 2023, 15(15): 3720. doi: 10.3390/rs15153720
|
[17] |
Wang Jingnan, Wang Xiaodong, Guan Jiping, et al. TAFFNet: Time-aware adaptive feature fusion network for very short-term precipitation forecasts[J]. Geophysical Research Letters, 2023, 50(15): e2023GL104370. doi: 10.1029/2023GL104370
|
[18] |
庄潇然, 郑玉, 王亚强, 等. 基于深度学习的融合降水临近预报方法及其在中国东部地区的应用研究[J]. 气象学报, 2023, 81(2): 286−303.
Zhuang Xiaoran, Zheng Yu, Wang Yaqiang, et al. A deep learning-based precipitation nowcast model and its application over East China[J]. Acta Meteorologica Sinica, 2023, 81(2): 286−303.
|
[19] |
Qiu Yunan, Lu Zhenyu, Tang Haibo. A short-term regional precipitation prediction model based on wind-improved spatiotemporal convolutional network[J]. Earth and Space Science, 2022, 9(9): e2022EA002411. doi: 10.1029/2022EA002411
|
[20] |
Chen Chengcheng, Zhang Qian, Kashani M H, et al. Forecast of rainfall distribution based on fixed sliding window long short-term memory[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16(1): 248−261. (查阅网上资料, 本条文献与第1条重复, 请确认)
|
[21] |
Fang Wei, Shen Liang, Sheng V S, et al. A novel method for precipitation nowcasting based on ST-LSTM[J]. Computers, Materials & Continua, 2022, 72(3): 4867−4877.
|
[22] |
Xiong Taisong, He Jianxing, Wang Hao, et al. Contextual Sa-attention convolutional LSTM for precipitation nowcasting: a spatiotemporal sequence forecasting view[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 12479−12491. doi: 10.1109/JSTARS.2021.3128522
|
[23] |
Wu Dali, Wu Li, Zhang Tao, et al. Short-term rainfall prediction based on radar echo using an improved self-attention PredRNN deep learning model[J]. Atmosphere, 2022, 13(12): 1963. doi: 10.3390/atmos13121963
|
[24] |
Lin F, Yuan X, Zhang Y, et al. Comprehensive transformer-based model architecture for real-world storm prediction[C]//European Conference on Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track. Turin: Springer, 2023: 54−71.
|
[25] |
Küçük Ç, Giannakos A, Schneider S, et al. Transformer-based nowcasting of radar composites from satellite images for severe weather[J]. Artificial Intelligence for the Earth Systems, 2024, 3(2): e230041.
|
[26] |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3−19.
|
[27] |
Kim B, Han M, Shim H, et al. A performance comparison of convolutional neural network-based image denoising methods: the effect of loss functions on low-dose CT images[J]. Medical Physics, 2019, 46(9): 3906−3923. doi: 10.1002/mp.13713
|
[28] |
Veillette M S, Samsi S, Mattioli C J. SEVIR: a storm event imagery dataset for deep learning applications in radar and satellite meteorology[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020: 22009−22019.
|
[29] |
Kingma D P, Ba J. Adam: a method for stochastic optimization[J]. arXiv: 1412.6980, 2014. (查阅网上资料, 不确定文献类型及格式是否正确, 请确认)
|
[30] |
Le Guen V, Thome N. Disentangling physical dynamics from unknown factors for unsupervised video prediction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11471−11481.
|
[31] |
Yang Nan, Li Xiaofeng. Lightweight AI-powered precipitation nowcasting[J]. The Innovation Geoscience, 2024, 2(2): 100066. doi: 10.59717/j.xinn-geo.2024.100066
|