留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球垂向位移负荷潮模式在渤海、黄海、东海及周边区域的准确度评估

徐晓庆 魏泽勋 滕飞 孙俊川 高秀敏 方国洪

徐晓庆,魏泽勋,滕飞,等. 全球垂向位移负荷潮模式在渤海、黄海、东海及周边区域的准确度评估[J]. 海洋学报,2022,44(12):19–30 doi: 10.12284/hyxb2022159
引用本文: 徐晓庆,魏泽勋,滕飞,等. 全球垂向位移负荷潮模式在渤海、黄海、东海及周边区域的准确度评估[J]. 海洋学报,2022,44(12):19–30 doi: 10.12284/hyxb2022159
Xu Xiaoqing,Wei Zexun,Teng Fei, et al. Accuracy assessment of global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas[J]. Haiyang Xuebao,2022, 44(12):19–30 doi: 10.12284/hyxb2022159
Citation: Xu Xiaoqing,Wei Zexun,Teng Fei, et al. Accuracy assessment of global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas[J]. Haiyang Xuebao,2022, 44(12):19–30 doi: 10.12284/hyxb2022159

全球垂向位移负荷潮模式在渤海、黄海、东海及周边区域的准确度评估

doi: 10.12284/hyxb2022159
基金项目: 国家自然科学基金(41821004, 42176035)
详细信息
    作者简介:

    徐晓庆(1986-),女,山东省烟台市人,工程师,主要从事潮汐潮流与负荷潮方面研究。E-mail:xuxq@fio.org.cn

    通讯作者:

    魏泽勋(1970-),男,研究员,主要从事潮汐和环流动力学方面研究。 E-mail:weizx@fio.org.cn

  • ① CM参考系包括大气、海洋在内的整个地球质量中心。
  • ② CF参考系为固体地球外表面的形状中心。
  • 中图分类号: P731.23

Accuracy assessment of global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

  • 摘要: 本研究利用渤海、黄海、东海及周边区域21个GPS站的调和常数资料,对5个全球垂向位移负荷潮模式(FES2014、EOT11a、GOT4.10c、GOT4.8和NAO.99b)在渤海、黄海、东海及周边区域的准确度进行了评估。结果表明,在渤海、黄海、东海及周边区域,对于M2分潮,FES2014和EOT11a模式结果准确度相对较高;对于S2分潮,NAO.99b和EOT11a模式结果准确度相对较高;对于K1分潮,EOT11a和FES2014模式结果准确度相对较高;对于O1分潮,EOT11a和GOT4.8模式结果准确度相对较高;对于N2分潮,EOT11a和FES2014模式结果准确度相对较高;对于K2分潮,NAO.99b和FES2014模式结果准确度相对较高;对于P1分潮,EOT11a和GOT4.8模式结果准确度相对较高;对于Q1分潮,FES2014和EOT11a模式结果准确度相对较高。除此之外,本文还简单分析了渤海、黄海、东海及周边区域8个主要分潮的垂向位移负荷潮分布特征。
    1)  ① CM参考系包括大气、海洋在内的整个地球质量中心。
    2)  ② CF参考系为固体地球外表面的形状中心。
  • 图  1  渤海、黄海、东海及周边区域GPS站位置

    Fig.  1  GPS station locations in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    图  2  不同全球垂向位移负荷潮模式下M2分潮在渤海、黄海、东海及周边区域的同潮图

    虚线为振幅(mm),实线为格林威治迟角(°)

    Fig.  2  Co-tidal charts of M2 for different global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    Dashed lines indicate amplitude (mm), solid lines indicate Greenwich phase-lag (°)

    图  3  不同全球垂向位移负荷潮模式下S2分潮在渤海、黄海、东海及周边区域的同潮图

    虚线为振幅(mm),实线为格林威治迟角(°)

    Fig.  3  Co-tidal charts of S2 for different global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    Dashed lines indicate amplitude (mm), solid lines indicate Greenwich phase-lag (°)

    图  4  不同全球垂向位移负荷潮模式下N2分潮在渤海、黄海、东海及周边区域的同潮图

    虚线为振幅(mm),实线为格林威治迟角(°)

    Fig.  4  Co-tidal charts of N2 for different global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    Dashed lines indicate amplitude (mm), solid lines indicate Greenwich phase-lag (°)

    图  5  不同全球垂向位移负荷潮模式下K2分潮在渤海、黄海、东海及周边区域的同潮图

    虚线为振幅(mm),实线为格林威治迟角(°)

    Fig.  5  Co-tidal charts of K2 for different global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    Dashed lines indicate amplitude (mm), solid lines indicate Greenwich phase-lag (°)

    图  9  不同全球垂向位移负荷潮模式下Q1分潮在渤海、黄海、东海及周边区域的同潮图

    虚线为振幅(mm),实线为格林威治迟角(°)

    Fig.  9  Co-tidal charts of Q1 for different global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    Dashed lines indicate amplitude (mm), solid lines indicate Greenwich phase-lag (°)

    图  6  不同全球垂向位移负荷潮模式下K1分潮在渤海、黄海、东海及周边区域的同潮图

    虚线为振幅(mm),实线为格林威治迟角(°)

    Fig.  6  Co-tidal charts of K1 for different global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    Dashed lines indicate amplitude (mm), solid lines indicate Greenwich phase-lag (°)

    图  7  不同全球垂向位移负荷潮模式下O1分潮在渤海、黄海、东海及周边区域的同潮图

    虚线为振幅(mm),实线为格林威治迟角(°)

    Fig.  7  Co-tidal charts of O1 for different global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    Dashed lines indicate amplitude (mm), solid lines indicate Greenwich phase-lag (°)

    图  8  不同全球垂向位移负荷潮模式下P1分潮在渤海、黄海、东海及周边区域的同潮图

    虚线为振幅(mm),实线为格林威治迟角(°)

    Fig.  8  Co-tidal charts of P1 for different global vertical displacement loading tide models in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    Dashed lines indicate amplitude (mm), solid lines indicate Greenwich phase-lag (°)

    表  1  全球垂向位移负荷潮模式介绍

    Tab.  1  Introduction of global vertical displacement loading tide models

    模式名称研制机构分辨率构建方法分潮
    FES2014法国潮汐小组
    (FTG)
    (1/16)°×(1/16)°同化模型M2、S2、K1、O1、N2、P1、K2、Q1、J1、2N2、L2、T2、R2、Mu2、Nu2、La2、MKS2、E2、M3、N4、S4、M4、MN4、MS4、M6、M8、Mf、Mm、MSf、Msqm、Mtm、Sa、Ssa(共33个)
    EOT11a德国地理学会(DGFI)(1/8)°×(1/8)°经验模型M2、S2、N2、K2、K1、O1、P1、Q1、S1、2N2、Mf、Mm、M4 (共13个)
    GOT4.10c美国戈达德太空飞行中心(GSFC)(1/2)°×(1/2)°经验模型M2、S2、K1、O1、N2、P1、K2、Q1、S1、M4(共10个)
    GOT4.8美国戈达德太空飞行中心(GSFC)(1/2)°×(1/2)°经验模型M2、S2、K1、O1、N2、P1、K2、Q1(共8个)
    NAO.99b日本国立天文观测台(NAO)(1/2)°×(1/2)°同化模型M2、S2、K1、O1、N2、P1、K2、Q1、M1、J1、OO1、2N2、Mu2、Nu2、L2、T2、Mf、Mm、MSf、Msm、Mtm、Sa、Ssa (共23个)
    下载: 导出CSV

    表  2  渤海、黄海、东海及周边区域GPS站在CM参考系下8个主要分潮的调和常数

    Tab.  2  Harmonic constants of eight principal tidal constituents under the CM reference frame in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    纬度经度观测时间长度/dM2S2N2K2K1O1P1Q1
    振幅迟角振幅迟角振幅迟角振幅迟角振幅迟角振幅迟角振幅迟角振幅迟角
    31.82°N130.60°E4 87914.51122.78.33146.63.01118.02.70115.29.85228.47.71224.73.24242.41.66211.4
    39.61°N115.89°E4 1831.10108.70.8296.50.21130.60.61169.74.08225.22.07200.50.87201.50.44201.4
    27.07°N142.20°E1 32012.1576.15.8596.92.3079.31.7067.812.51228.09.96211.24.75230.52.20192.5
    27.10°N142.18°E4 71212.3176.36.2497.02.2980.41.4669.612.69228.19.95208.94.50230.12.17201.0
    43.79°N125.44°E2 3751.2585.00.5292.30.24126.21.10110.64.02227.42.88190.11.60177.00.64189.3
    36.40°N127.37°E4 3984.5253.32.9097.10.5753.40.7698.94.43260.93.69233.42.14242.30.85222.4
    30.56°N131.02°E2 24819.89110.99.55138.23.92106.23.87117.810.47257.99.70222.94.15234.31.92210.0
    35.71°N139.49°E3 2747.3949.43.3975.00.9460.11.3352.48.80213.07.51197.32.58216.11.45187.7
    35.96°N140.66°E3 2058.6938.85.8065.71.0933.21.3929.08.87204.18.73193.33.69211.11.97187.8
    25.03°N102.80°E4 0271.26168.21.49107.80.17170.91.4734.24.50284.61.39287.30.3719.60.30232.5
    39.14°N141.13°E3 3166.7518.33.0758.90.6516.60.5625.29.44205.07.28185.83.31206.21.43181.9
    35.68°N139.56°E3 2397.6448.73.6774.51.0855.10.61105.39.69214.07.56197.12.93217.81.62191.3
    37.08°N127.02°E3 5057.5952.33.6699.90.9741.11.0592.94.25255.73.31238.31.43256.00.73221.9
    31.10°N121.20°E4 3737.39225.31.73242.61.57206.91.25305.26.79247.74.51237.62.27246.60.91219.3
    43.53°N141.84°E3 0955.218.32.3950.50.34337.70.5092.87.40204.46.69182.82.85204.51.32176.3
    37.28°N127.05°E4 6187.0655.93.60102.40.9842.41.1082.34.00243.93.30234.31.70232.70.75227.2
    36.11°N140.09°E5 7687.4442.54.2066.60.9652.10.8949.59.55217.07.63193.93.41213.71.61190.3
    36.13°N138.36°E5 5085.9951.13.1790.50.9263.90.7884.38.47228.66.31196.32.96229.51.36189.1
    30.53°N114.36°E5 4712.64150.31.91127.50.63146.30.19317.04.35257.62.26253.20.92267.60.46239.2
    34.37°N109.22°E3 0411.26144.01.04117.70.22156.90.73184.02.08254.21.38228.20.86163.70.41195.8
    24.80°N120.99°E3 15012.53216.54.04221.33.02192.91.02178.87.14287.27.52268.32.53290.81.54250.0
    注:振幅单位为mm,迟角是格林威治迟角,单位为(°)。
    下载: 导出CSV

    表  3  渤海、黄海、东海及周边区域GPS站在CF参考系下8个主要分潮的调和常数

    Tab.  3  Harmonic constants of eight principal tidal constituents under the CF reference frame in the Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    纬度经度观测时间长度/dM2S2N2K2K1O1P1Q1
    振幅迟角振幅迟角振幅迟角振幅迟角振幅迟角振幅迟角振幅迟角振幅迟角
    31.82°N130.60°E4 87915.87123.48.48147.53.40117.82.69115.311.05234.88.69230.03.73247.11.81216.8
    39.61°N115.89°E4 1832.22113.10.9199.20.55114.90.57167.75.22245.62.76232.41.10238.70.57227.8
    27.07°N142.20°E1 32013.0081.95.80100.02.6185.21.6868.513.95231.710.91215.25.25233.62.33196.7
    27.10°N142.18°E4 71213.1682.06.19100.02.6186.11.4470.514.14231.710.87213.15.00233.42.33204.7
    43.79°N125.44°E2 3752.4498.10.65100.40.61111.71.12108.35.75247.63.55218.61.58206.40.76211.5
    36.40°N127.37°E4 3985.1067.22.9599.90.8476.00.7697.76.29266.84.90243.22.68250.81.05231.6
    30.56°N131.02°E2 24821.17112.39.67139.24.30107.23.86117.912.00260.010.62227.14.57238.62.06214.6
    35.71°N139.49°E3 2747.8959.53.3478.91.2374.61.3453.110.15223.48.32206.53.07227.21.58196.4
    35.96°N140.66°E3 2058.9448.15.7267.91.2351.41.3929.810.01215.89.48201.84.13219.92.10194.4
    25.03°N102.80°E4 0272.16158.71.45108.60.46138.01.4731.65.24292.82.25295.90.65356.40.40259.0
    39.14°N141.13°E3 3166.6530.63.0163.00.7547.80.5828.110.67217.17.90197.63.73217.61.54192.0
    35.68°N139.56°E3 2398.1358.63.6278.21.3369.30.63105.211.05223.48.38206.33.42227.51.76198.8
    37.08°N127.02°E3 5058.1160.93.72102.01.1759.01.0691.96.10263.64.59247.82.05263.70.93232.7
    31.10°N121.20°E4 3737.46215.81.83239.21.61193.31.27305.17.94254.25.44245.12.66253.41.04228.6
    43.53°N141.84°E3 0955.0824.22.3655.70.3446.00.5691.28.79221.27.27197.23.29219.31.42188.7
    37.28°N127.05°E4 6187.6664.83.67104.51.1859.81.1181.45.72256.04.55245.02.20245.70.97236.5
    36.11°N140.09°E5 7687.8053.04.1269.61.2168.30.9050.511.04226.28.39203.43.87222.91.75198.0
    36.13°N138.36°E5 5086.5663.03.1994.51.2277.60.8084.510.18236.97.11207.43.54237.31.49198.3
    30.53°N114.36°E5 4713.74145.71.95129.80.96135.50.22315.75.41266.73.23263.51.32277.30.63252.3
    34.37°N109.22°E3 0412.25136.21.08117.90.52128.40.69185.33.35274.52.27256.90.58200.70.47225.3
    24.80°N120.99°E3 15012.98211.04.23220.93.17186.41.02181.68.08287.58.34269.32.85290.61.69252.5
    注:振幅单位为mm,迟角是格林威治迟角,单位为(°)。
    下载: 导出CSV

    表  4  各模式与渤海、黄海、东海及周边区域GPS站调和常数的标准差及拟合度

    Tab.  4  The standard deviations and fitting degrees of the harmonic constants between each model values and GPS observations in Bohai Sea, Yellow Sea, East China Sea and surrounding areas

    FES2014EOT11aGOT4.10cGOT4.8NAO.99b
    M2${ \Delta H }$/mm0.470.560.880.850.94
    ${ \Delta g }$/(°)19.712.945.745.6510.22
    ${ \sigma }$/mm0.710.901.711.691.88
    ${ {r^2} }$/%99.1298.6294.8595.0193.81
    S2${ \Delta H }$/mm0.700.690.750.760.53
    ${ \Delta g }$/(°)7.206.959.398.246.14
    ${ \sigma }$/mm1.091.081.121.130.83
    ${ {r^2} }$/%89.1689.2288.5188.2893.66
    K1${ \Delta H }$/mm1.061.031.061.081.63
    ${ \Delta g }$/(°)9.586.4410.1310.4112.18
    ${ \sigma }$/mm1.791.751.841.852.53
    ${ {r^2} }$/%81.1383.6380.1179.8662.39
    O1${ \Delta H }$/mm0.240.180.130.171.02
    ${ \Delta g }$/(°)5.511.496.024.9011.36
    ${ \sigma }$/mm0.520.310.490.431.55
    ${ {r^2} }$/%97.9599.3498.2098.6181.99
    N2${ \Delta H }$/mm0.160.100.180.170.35
    ${ \Delta g }$/(°)9.284.4313.3712.1716.23
    ${ \sigma }$/mm0.230.170.310.300.47
    ${ {r^2} }$/%97.3798.6795.1895.5189.01
    K2${ \Delta H }$/mm0.430.450.470.470.38
    ${ \Delta g }$/(°)37.7438.4537.8837.7738.06
    ${ \sigma }$/mm0.780.800.800.820.78
    ${ {r^2} }$/%56.1853.7154.0652.0356.84
    P1${ \Delta H }$/mm0.410.300.410.370.28
    ${ \Delta g }$/(°)13.1910.2413.0213.0419.39
    ${ \sigma }$/mm0.580.500.580.550.72
    ${ {r^2} }$/%86.9891.2486.9488.1779.71
    Q1${ \Delta H }$/mm0.060.080.050.070.16
    ${ \Delta g }$/(°)6.525.148.348.1618.24
    ${ \sigma }$/mm0.150.160.170.160.39
    ${ {r^2} }$/%95.7795.3194.5594.7369.98
    下载: 导出CSV

    表  5  EOT11a垂向位移负荷潮模式分区域准确度分析

    Tab.  5  Accuracy analysis of EOT11a vertical displacement loading tide model in different regions

    中国大陆日本岛朝鲜半岛
    M2${ \Delta H }$/mm0.310.701.04
    ${ \Delta g }$/(°)4.691.682.47
    ${ \sigma }$/mm0.820.911.10
    S2${ \Delta H }$/mm0.700.990.07
    ${ \Delta g }$/(°)10.834.663.33
    ${ \sigma }$/mm0.941.350.21
    K1${ \Delta H }$/mm1.600.840.60
    ${ \Delta g }$/(°)9.196.184.67
    ${ \sigma }$/mm1.971.940.84
    O1${ \Delta H }$/mm0.170.250.08
    ${ \Delta g }$/(°)1.471.571.60
    ${ \sigma }$/mm0.230.390.17
    N2${ \Delta H }$/mm0.080.120.11
    ${ \Delta g }$/(°)3.696.182.40
    ${ \sigma }$/mm0.140.200.12
    K2${ \Delta H }$/mm0.500.590.07
    ${ \Delta g }$/(°)77.8123.436.07
    ${ \sigma }$/mm0.910.880.18
    P1${ \Delta H }$/mm0.190.300.51
    ${ \Delta g }$/(°)22.303.587.37
    ${ \sigma }$/mm0.520.460.60
    Q1${ \Delta H }$/mm0.080.070.06
    ${ \Delta g }$/(°)9.502.363.70
    ${ \sigma }$/mm0.180.130.10
    下载: 导出CSV
  • [1] Shum C K, Woodworth P L, Andersen O B, et al. Accuracy assessment of recent ocean tide models[J]. Journal of Geophysical Research: Oceans, 1997, 102(C11): 25173−25194. doi: 10.1029/97JC00445
    [2] Seifi F, Deng Xiaoli, Andersen O B. Assessment of the accuracy of recent empirical and assimilated tidal models for the great barrier reef, Australia, using satellite and coastal data[J]. Remote Sensing, 2019, 11(10): 1211. doi: 10.3390/rs11101211
    [3] Fang Guohong, Xu Xiaoqing, Wei Zexun, et al. Vertical displacement loading tides and self-attraction and loading tides in the Bohai, Yellow, and East China Seas[J]. Science China Earth Sciences, 2013, 56(1): 63−70. doi: 10.1007/s11430-012-4518-9
    [4] 徐晓庆, 魏泽勋, 滕飞, 等. 南海及邻近海峡垂向位移负荷潮和自吸−负荷潮[J]. 海洋学报, 2022, 44(7): 44−51.

    Xu Xiaoqing, Wei Zexun, Teng Fei, et al. Vertical displacement loading tides and self-attraction and loading tides in the South China Sea and adjacent straits[J]. Haiyang Xuebao, 2022, 44(7): 44−51.
    [5] Fu L L, Cazenave A. Satellite altimetry and earth sciences: a handbook of techniques and applications[R]. San Diego: Academic Press, 2001: 1−463.
    [6] Visser P N A M, Sneeuw N, Reubelt T, et al. Space-borne gravimetric satellite constellations and ocean tides: aliasing effects[J]. Geophysical Journal International, 2010, 181(2): 789−805.
    [7] Iliffe J C, Ziebart M K, Turner J F, et al. Accuracy of vertical datum surfaces in coastal and offshore zones[J]. Survey Review, 2013, 45(331): 254−262. doi: 10.1179/1752270613Y.0000000040
    [8] Keysers J H, Quadros N D, Collier P A. Vertical datum transformations across the Australian littoral zone[J]. Journal of Coastal Research, 2015, 31(1): 119−128. doi: 10.2112/JCOASTRES-D-12-00228.1
    [9] Ito T, Okubo M, Sagiya T. High resolution mapping of Earth tide response based on GPS data in Japan[J]. Journal of Geodynamics, 2009, 48(3/5): 253−259.
    [10] Khan S A, Tscherning C C. Determination of semi-diurnal ocean tide loading constituents using GPS in Alaska[J]. Geophysical Research Letters, 2001, 28(11): 2249−2252. doi: 10.1029/2000GL011890
    [11] King M A, Penna N T, Clarke P J, et al. Validation of ocean tide models around Antarctica using onshore GPS and gravity data[J]. Journal of Geophysical Research, 2005, 110(B8): B08401.
    [12] Vergnolle M, Bouin M N, Morel L, et al. GPS estimates of ocean tide loading in NW-France: determination of ocean tide loading constituents and comparison with a recent ocean tide model[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 173(2): 444−458.
    [13] Yeh T K, Hwang C, Huang Jiufu, et al. Vertical displacement due to ocean tidal loading around Taiwan based on GPS observations[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2011, 22(4): 373−382. doi: 10.3319/TAO.2011.01.27.01(T)
    [14] Yuan Linguo, Chao B F, Ding Xiaoli, et al. The tidal displacement field at Earth’s surface determined using global GPS observations[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 2618−2632. doi: 10.1002/jgrb.50159
    [15] Lyard F H, Allain D J, Cancet M, et al. FES2014 global ocean Tide Atlas: design and performance[J]. Ocean Science, 2020, 17(3): 615−649.
    [16] Savcenko R, Bosch W. EOT11A-empirical ocean tide model from multi-mission satellite altimetry[R]. Munich, Germany: Deutsches Geodätisches Forschungsinstitut, 2012: 49.
    [17] Ray R D. Precise comparisons of bottom-pressure and Altimetric Ocean tides[J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4570−4584. doi: 10.1002/jgrc.20336
    [18] Matsumoto K, Takanezawa T, Ooe M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan[J]. Journal of Oceanography, 2000, 56(5): 567−581. doi: 10.1023/A:1011157212596
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  76
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-07-22
  • 网络出版日期:  2022-09-21
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回