留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄河口潮滩泥沙絮凝研究

于上 谢卫明 何青 王宪业 赵中豪 郭磊城 徐凡

于上,谢卫明,何青,等. 黄河口潮滩泥沙絮凝研究[J]. 海洋学报,2022,44(11):99–110 doi: 10.12284/hyxb2022105
引用本文: 于上,谢卫明,何青,等. 黄河口潮滩泥沙絮凝研究[J]. 海洋学报,2022,44(11):99–110 doi: 10.12284/hyxb2022105
Yu Shang,Xie Weiming,He Qing, et al. Study of sediment flocculation in tidal flat of Huanghe River Estuary[J]. Haiyang Xuebao,2022, 44(11):99–110 doi: 10.12284/hyxb2022105
Citation: Yu Shang,Xie Weiming,He Qing, et al. Study of sediment flocculation in tidal flat of Huanghe River Estuary[J]. Haiyang Xuebao,2022, 44(11):99–110 doi: 10.12284/hyxb2022105

黄河口潮滩泥沙絮凝研究

doi: 10.12284/hyxb2022105
基金项目: 国家自然科学基金重点项目(51739005,51909101,42006150,41876091,U2040216);科技部国际科技创新合作重点项目(2016YFE0133700)。
详细信息
    作者简介:

    于上(1994-),男,吉林省长春市人,博士研究生,主要从事河口潮滩泥沙运动及动力地貌研究。 E-mail:52173904006@stu.ecnu.edu.cn

    通讯作者:

    谢卫明,博士后,主要从事河口潮滩泥沙运动和动力地貌过程研究。 E-mail:wmxie@sklec.ecnu.edu.cn

  • 中图分类号: TV142+.1

Study of sediment flocculation in tidal flat of Huanghe River Estuary

  • 摘要: 本文基于现场观测的絮团粒径、悬沙浓度及水动力数据,研究了黄河口南部潮滩泥沙絮凝特征。研究发现,黄河口潮滩絮团粒径在25.42~264.44 μm之间,平均为95.20 μm。水体紊动对黄河口潮滩絮凝的影响存在差异,紊动对絮凝促进作用的上限约为Gl=3.76 s−1。紊动强度低于Gl时,紊动促进泥沙絮凝,絮团粒径随紊动加强而增大;反之水体紊动对絮凝主要起抑制作用,絮团粒径随紊动强度增大而减小。悬沙浓度对黄河口潮滩泥沙絮凝起抑制作用,同等紊动条件下高悬沙浓度对应的絮团粒径更小。黄河口潮滩絮团有效密度与粒径呈现负相关关系,沉速主要受粒径影响。本研究补充了对弱潮河口潮滩泥沙絮凝特性的认识。
  • 图  1  研究区域及仪器布置示意图

    Fig.  1  Sketch of study area and instrument layout

    图  2  观测期间水动力、波浪与风速随时间变化序列

    Fig.  2  Time series of hydrodynamic force, wave and wind during the observation period

    图  3  观测期间床面切应力与悬沙浓度(SSC)随时间变化序列

    Fig.  3  Time series of bed shear stress, bottom turbulent shear rate and suspended sediment concentration (SSC) during the observation period

    图  4  研究区域的“泥丸”型泥沙聚合体

    Fig.  4  The “pill-like” sediment aggregates in the study area

    图  5  观测期间絮团粒径、体积浓度、有效密度与沉速随时间变化序列

    Fig.  5  Time series of floc size, volume concentration, effective density and settling velocity during the observation period

    图  6  絮团粒径与底部紊动剪切率关系

    Fig.  6  Variation of floc size with bottom turbulent shear rate

    图  7  絮团粒径与悬沙浓度(SSC)关系

    Fig.  7  Variation of floc size with suspended sediment concentration

    图  8  絮团粒径与有效密度关系

    Fig.  8  Variation of floc size with effective density

    图  9  絮团粒径与沉速关系

    Fig.  9  Variation of floc size with settling velocity

    表  1  各个潮周期絮团粒径与紊动剪切率、悬沙浓度及流速的Spearman系数

    Tab.  1  Spearman correlation coefficient of floc particle size and bottom turbulent shear rate, suspended sediment concentration and flow velocity

    时期 底部紊动剪切率悬沙浓度流速
    T10.51/显著相关0.11/不相关–0.27/不相关
    T2–0.20/不相关–0.48/微相关0.18/不相关
    T3–0.41/微相关–0.48/微相关–0.11/不相关
    T4–0.65/显著相关–0.76/显著相关0.34/微相关
    下载: 导出CSV

    表  2  不同Gl对应拟合结果对比

    Tab.  2  Fitting results of different Gl

    Gl/s−1R²(紊动促进絮凝阶段)R²(紊动抑制絮凝阶段)
    3.310.170.34
    3.760.530.32
    3.980.420.28
    4.300.430.26
    4.590.090.02
    下载: 导出CSV
  • [1] Agrawal Y C, Pottsmith H C. Instruments for particle size and settling velocity observations in sediment transport[J]. Marine Geology, 2000, 168(1/4): 89−114.
    [2] Dyer K R, Manning A J. Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions[J]. Journal of Sea Research, 1999, 41(1/2): 87−95.
    [3] Fettweis M. Uncertainty of excess density and settling velocity of mud flocs derived from in situ measurements[J]. Estuarine, Coastal and Shelf Science, 2008, 78(2): 426−436. doi: 10.1016/j.ecss.2008.01.007
    [4] Gibbs R J. Estuarine flocs: their size, settling velocity and density[J]. Journal of Geophysical Research: Oceans, 1985, 90(C2): 3249−3251. doi: 10.1029/JC090iC02p03249
    [5] Mikkelsen O, Pejrup M. The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity[J]. Geo-Marine Letters, 2001, 20(4): 187−195. doi: 10.1007/s003670100064
    [6] Sternberg R W, Berhane I, Ogston A S. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf[J]. Marine Geology, 1999, 154(1/4): 43−53.
    [7] Madsen O S, Grant W S. The threshold of sediment movement under oscillatory waves: a discussion[J]. Journal of Sedimentary Research, 1975, 45(1): 360−361. doi: 10.1306/212F6D61-2B24-11D7-8648000102C1865D
    [8] 陈锦山, 何青, 郭磊城. 长江悬浮物絮凝特征[J]. 泥沙研究, 2011(5): 11−18. doi: 10.16239/j.cnki.0468-155x.2011.05.010

    Chen Jinshan, He Qing, Guo Leicheng. Flocculation characteristics of suspended particulate matter in Yangtze River[J]. Journal of Sediment Research, 2011(5): 11−18. doi: 10.16239/j.cnki.0468-155x.2011.05.010
    [9] 程江, 何青, 王元叶. 利用LISST观测絮凝体粒径、有效密度和沉速的垂线分布[J]. 泥沙研究, 2005(1): 33−39. doi: 10.3321/j.issn:0468-155X.2005.01.006

    Cheng Jiang, He Qing, Wang Yuanye. Using LISST-100 for in-situ estimates of floc size, density and settling velocity, Changjiang Estuary, China[J]. Journal of Sediment Research, 2005(1): 33−39. doi: 10.3321/j.issn:0468-155X.2005.01.006
    [10] 程江, 何青, 夏小明. 长江口徐六泾悬浮细颗粒泥沙絮凝体特性[J]. 海洋与湖沼, 2007, 38(4): 304−313. doi: 10.3321/j.issn:0029-814X.2007.04.003

    Cheng Jiang, He Qing, Xia Xiaoming. Characteristics of suspended fine sediment flocs in Changjiang (Yangtze) Estuary[J]. Oceanologia et Limnologia Sinica, 2007, 38(4): 304−313. doi: 10.3321/j.issn:0029-814X.2007.04.003
    [11] 唐建华. 长江口及其邻近海域粘性细颗粒泥沙絮凝特性研究[D]. 上海: 华东师范大学, 2007.

    Tang Jianhua. Characteristics of fine cohesive sediment’s flocculation in the Changjiang Estuary and its adjacent sea area[D]. Shanghai: East China Normal University, 2007.
    [12] Xia X M , Li Y, Yang H, et al. Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China[J]. Continental Shelf Research, 2004, 24(16): 1809−1826. doi: 10.1016/j.csr.2004.06.009
    [13] 邓智瑞, 何青, 杨清书, 等. 珠江口磨刀门泥沙絮凝特征[J]. 海洋学报, 2015, 37(9): 152−161.

    Deng Zhirui, He Qing, Yang Qingshu, et al. Observations of in situ flocs characteristic in the Modaomen Estuary of the Pearl River[J]. Haiyang Xuebao, 2015, 37(9): 152−161.
    [14] 林建良, 何青, 杨清书, 等. 珠江磨刀门河口洪季泥沙絮凝机理研究[J]. 泥沙研究, 2017, 42(1): 60−67.

    Lin Jianliang, He Qing, Yang Qingshu, et al. Study on sediment flocculation mechanism at Modaomen in the Pearl River Estuary in flood season[J]. Journal of Sediment Research, 2017, 42(1): 60−67.
    [15] Guo Leicheng, He Qing. Freshwater flocculation of suspended sediments in the Yangtze River, China[J]. Ocean Dynamics, 2011, 61(2-3): 371−386. doi: 10.1007/s10236-011-0391-x
    [16] 郭超, 何青. 长江中下游洪枯季泥沙絮凝研究[J]. 泥沙研究, 2014(5): 59−64. doi: 10.16239/j.cnki.0468-155x.2014.05.001

    Guo Chao, He Qing. Comparison study on flocculation between flood and dry season in Yangtze River[J]. Journal of Sediment Research, 2014(5): 59−64. doi: 10.16239/j.cnki.0468-155x.2014.05.001
    [17] 郭超. 粘性泥沙絮凝沉降过程与控制机制研究[D]. 上海: 华东师范大学, 2018.

    Guo Chao. Cohesive sediment flocculation and settling processes and the controlling mechanisms[D]. Shanghai: East China Normal University, 2018.
    [18] 郭超, 何青. 黏性泥沙絮凝研究综述与展望[J]. 泥沙研究, 2021, 46(2): 66−73.

    Guo Chao, He Qing. Review of the research on cohesive sediment flocculation[J]. Journal of Sediment Research, 2021, 46(2): 66−73.
    [19] 郭超, 何青, 郭磊城, 等. 紊动对黏性细颗粒泥沙絮凝沉降影响的试验研究[J]. 泥沙研究, 2019, 44(2): 18−25.

    Guo Chao, He Qing, Guo Leicheng, et al. Study on the effects of turbulence on cohesive sediment flocculation and settling properties[J]. Journal of Sediment Research, 2019, 44(2): 18−25.
    [20] 朱中凡, 赵明, 杨铁笙. 紊动水流中细颗粒泥沙絮凝发育特征的试验研究[J]. 水力发电学报, 2010, 29(4): 77−83.

    Zhu Zhongfan, Zhao Ming, Yang Tiesheng. Experimental research on the flocculation characteristics of cohesive sediment in turbulent flow[J]. Journal of Hydroelectric Engineering, 2010, 29(4): 77−83.
    [21] Guo Chao, He Qing, van Prooijen B C, et al. Investigation of flocculation dynamics under changing hydrodynamic forcing on an intertidal mudflat[J]. Marine Geology, 2018, 395: 120−132.
    [22] Hill P S, Newgard J P, Law B A, et al. Flocculation on a muddy intertidal flat in Willapa Bay, Washington, Part II: Observations of suspended particle size in a secondary channel and adjacent flat[J]. Continental Shelf Research, 2013, 60 Suppl 1: S145−S156.
    [23] Law B A, Milligan T G, Hill P S, et al. Flocculation on a muddy intertidal flat in Willapa Bay, Washington, Part I: A regional survey of the grain size of surficial sediments[J]. Continental Shelf Research, 2013, 60 Suppl 1: S136−S144.
    [24] Poirier E, van Proosdij D, Milligan T G. The effect of source suspended sediment concentration on the sediment dynamics of a macrotidal creek and salt marsh[J]. Continental Shelf Research, 2017, 148: 130−138.
    [25] 李博闻, 单红仙, 张少同, 等. 波浪与潮流对潮滩悬沙含量贡献的现场观测[J]. 海洋地质与第四纪地质, 2016, 36(3): 183−190.

    Li Bowen, Shan Hongxian, Zhang Shaotong, et al. Contribution of waves and currents to sediment suspension revealed by in-situ observation[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 183−190.
    [26] 于守兵, 凡姚申. 黄河三角洲海岸线标准对陆地面积的影响[J]. 海洋地质前沿, 2021, 37(2): 1−9.

    Yu Shoubing, Fan Yaoshen. Coastline criteria for land area of the Huanghe River Delta and their significance[J]. Marine Geology Frontiers, 2021, 37(2): 1−9.
    [27] 程义吉, 高菁. 莱州湾海域水文特征及冲淤变化分析[J]. 海岸工程, 2006, 25(3): 1−6. doi: 10.3969/j.issn.1002-3682.2006.03.001

    Cheng Yiji, Gao Jing. Analysis of hydrographic characteristics and changes in scour and silting in the Laizhou Bay Area[J]. Coastal Engineering, 2006, 25(3): 1−6. doi: 10.3969/j.issn.1002-3682.2006.03.001
    [28] 张盼. 莱州湾西南部现代沉积环境研究[D]. 青岛: 中国海洋大学, 2014.

    Zhang Pan. A study on modern sedimentary environment in southwestern Laizhou Bay[D]. Qingdao: Ocean University of China, 2014.
    [29] 沈逸. 河口含沙量率定及悬沙输运应用研究[D]. 上海: 华东师范大学, 2018.

    Shen Yi. A study on the calibration of optical backscatter sensors for measurement of suspended sediment concentration and its application for suspended sediment transport processes[D]. Shanghai: East China Normal University, 2018.
    [30] 陈语, 何青, 张迨, 等. 长江口浑浊带枯季悬沙粒度分布特征[J]. 泥沙研究, 2016(1): 24−30.

    Chen Yu, He Qing, Zhang Dai, et al. Grain size distribution of suspended sediment in Yangtze River Estuary turbidity maximum in dry season[J]. Journal of Sediment Research, 2016(1): 24−30.
    [31] 于上, 何青, 陈语, 等. 长江口最大浑浊带悬沙粒度对流域减沙的响应研究[J]. 泥沙研究, 2021, 46(4): 60−67.

    Yu Shang, He Qing, Chen Yu, et al. Response of suspended sediment particle size to sediment reduction in the Yangtze Estuary turbidity maximum zone[J]. Journal of Sediment Research, 2021, 46(4): 60−67.
    [32] Christiansen T, Wiberg P L, Milligan T G. Flow and sediment transport on a tidal salt marsh surface[J]. Estuarine, Coastal and Shelf Science, 2000, 50(3): 315−331. doi: 10.1006/ecss.2000.0548
    [33] Dey S. Turbulence in open-channel flows[M]//Dey S. Fluvial Hydrodynamics. Berlin, Heidelberg: Springer, 2014: 95−187.
    [34] Wiberg P, Smith J D. A comparison of field data and theoretical models for wave-current interactions at the bed on the continental shelf[J]. Continental Shelf Research, 1983, 2(2/3): 147−162.
    [35] Kim S C, Friedrichs C T, Maa J P Y, et al. Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2000, 126(6): 399−406.
    [36] Xie Weiming, He Qing, Wang Xianye, et al. Role of mudflat-creek sediment exchanges in intertidal sedimentary processes[J]. Journal of Hydrology, 2018, 567: 351−360.
    [37] 李华国, 袁美琦, 张秀芹. 淤泥临界起动条件及冲刷率试验研究[J]. 水道港口, 1995(3): 20−26.

    Li Huaguo, Yuan Meiqi, Zhang Xiuqin. Study on critical motion and erosion of cohesive sediment[J]. Journal of Waterway and Harbor, 1995(3): 20−26.
    [38] 张耀哲, 王敬昌. 水库淤积泥沙干容重分布规律及其计算方法的研究[J]. 泥沙研究, 2004(3): 54−58. doi: 10.3321/j.issn:0468-155X.2004.03.008

    Zhang Yaozhe, Wang Jingchang. Study on distribution and calculation method of reservoir sediment dry bulk density[J]. Journal of Sediment Research, 2004(3): 54−58. doi: 10.3321/j.issn:0468-155X.2004.03.008
    [39] Verstraeten G, Poesen J. Variability of dry sediment bulk density between and within retention ponds and its impact on the calculation of sediment yields[J]. Earth Surface Processes and Landforms, 2001, 26(4): 375−394. doi: 10.1002/esp.186
    [40] Lumborg U. Modelling the deposition, erosion, and flux of cohesive sediment through Øresund[J]. Journal of Marine Systems, 2005, 56(1/2): 179−193. doi: 10.1016/j.jmarsys.2004.11.003
    [41] 史本伟. 长江口崇明东滩盐沼−光滩过渡带沉积动力过程研究[D]. 上海: 华东师范大学, 2012.

    Shi Benwei. Sediment dynamic processes over transitional zone of salt marsh-mudflat on Eastern Chongming Island, Yangtze Estuary[D]. Shanghai: East China Normal University, 2012.
    [42] 郑杰文. 现代黄河三角洲沉积物波浪动力响应过程对其再悬浮控制作用研究[D]. 青岛: 中国海洋大学, 2013.

    Zheng Jiewen. The role of seabed dynamic response in sediment resuspension under waves in modern Yellow River Delta[D]. Qingdao: Ocean University of China, 2013.
    [43] 谢卫明, 何青, 王宪业, 等. 潮沟系统水沙输运研究——以长江口崇明东滩为例[J]. 海洋学报, 2017, 39(7): 80−91.

    Xie Weiming, He Qing, Wang Xianye, et al. Hydrodynamic process and sediment transport in a tidal creek system over the Easten Chongming Island, Yangtze Estuary[J]. Haiyang Xuebao, 2017, 39(7): 80−91.
    [44] Winterwerp J C, Manning A J, Martens C, et al. A heuristic formula for turbulence-induced flocculation of cohesive sediment[J]. Estuarine, Coastal and Shelf Science, 2006, 68(1/2): 195−207. doi: 10.1016/j.ecss.2006.02.003
    [45] Eisma D, Li A. Changes in suspended-matter floc size during the tidal cycle in the dollard estuary[J]. Netherlands Journal of Sea Research, 1993, 31(2): 107−117. doi: 10.1016/0077-7579(93)90001-9
    [46] 柴朝晖, 方红卫, 王茜, 等. 水流和电解质对黏性泥沙絮凝沉降影响试验[J]. 水科学进展, 2017, 28(2): 285−292. doi: 10.14042/j.cnki.32.1309.2017.02.014

    Chai Zhaohui, Fang Hongwei, Wang Xi, et al. Effect of flow and electrolyte on the flocculation-settling of cohesive sediment[J]. Advances in Water Science, 2017, 28(2): 285−292. doi: 10.14042/j.cnki.32.1309.2017.02.014
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  173
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-21
  • 修回日期:  2022-07-04
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2022-11-03

目录

    /

    返回文章
    返回