留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用稳定同位素技术研究江苏近海食物网营养结构的季节性变化

陆亚楠 张瑞 张虎 张硕 高世科

陆亚楠,张瑞,张虎,等. 应用稳定同位素技术研究江苏近海食物网营养结构的季节性变化[J]. 海洋学报,2022,44(2):1–10 doi: 10.12284/hyxb2022040
引用本文: 陆亚楠,张瑞,张虎,等. 应用稳定同位素技术研究江苏近海食物网营养结构的季节性变化[J]. 海洋学报,2022,44(2):1–10 doi: 10.12284/hyxb2022040
Lu Ya’nan,Zhang Rui,Zhang Hu, et al. Seasonal variation in the trophic structure of food webs in coastal waters of Jiangsu Province based on stable isotope techniques[J]. Haiyang Xuebao,2022, 44(2):1–10 doi: 10.12284/hyxb2022040
Citation: Lu Ya’nan,Zhang Rui,Zhang Hu, et al. Seasonal variation in the trophic structure of food webs in coastal waters of Jiangsu Province based on stable isotope techniques[J]. Haiyang Xuebao,2022, 44(2):1–10 doi: 10.12284/hyxb2022040

应用稳定同位素技术研究江苏近海食物网营养结构的季节性变化

doi: 10.12284/hyxb2022040
基金项目: 江苏海州湾国家海洋牧场示范项目(D-8005-18-0188);上海市科委地方能力建设项目(21010502200)。
详细信息
    作者简介:

    陆亚楠(2000—),女,江苏省南通市人,主要研究方向为近海生态环境修复。E-mail: 1549577486@qq.com

    通讯作者:

    张硕(1976—),男,博士,教授,主要研究方向为近海生态环境修复。E-mail: s-zhang@shou.edu.cn

    高世科(1994—),男,博士研究生,主要研究方向为近海生态连通性。E-mail: Gshike@163.com

  • 中图分类号: P734.2+4

Seasonal variation in the trophic structure of food webs in coastal waters of Jiangsu Province based on stable isotope techniques

  • 摘要: 本研究基于稳定同位素技术对江苏近海春、夏、秋季采集的不同生物类群(鱼类、甲壳类、头足类和底栖动物等)进行稳定同位素的分析,利用SIBER模型计算不同季节消费者的营养生态位,并计算出6种营养结构的量化指标。结果表明,3个季节的δ13C值、δ15N值均差异不显著(p>0.05)。春季δ13C值范围为−24.47‰~−14.50‰,δ15N值范围为6.86‰~(14.98±0.49)‰,营养级范围为1.52 ~(4.28±0.17);夏季δ13C值的范围为−19.86‰~−14.44‰,δ15N值范围为5.79‰~(12.54±3.50)‰,营养级范围为1.25 ~3.52,;秋季δ13C值的范围为(−22.17±4.90)‰~(−14.21±0.36)‰,δ15N值范围为6.30‰~(14.60±0.51)‰,营养级范围1.34 ~(4.15±0.14)。各个季节的食物网结构稳定,一些消费者的营养生态位出现不同程度的重叠现象。其中,春季的食物来源较为广泛,生物营养层次和群落多样性更高;夏季消费者的食物来源更加丰富,但生态位分化程度较低;秋季的食物网结构比较单一,但营养生态位分布较广。本研究结果为进一步评估江苏近海渔业生态系统的营养结构奠定了基础,也为江苏近海渔业环境保护和渔业资源的恢复与管理提供一定科学依据和参考基础。
  • 图  1  江苏近海采样点位置

    Fig.  1  Locations of sampling sites in the coastal waters of Jiangsu Province

    图  2  春、夏、秋3季江苏近海生物δ13C、δ15N值的双坐标图

    Fig.  2  The biplot of δ13C, δ15N of organisms from the coastal waters of Jiangsu Province in spring, summer and autumn

    图  3  春、夏、秋3季江苏近海生物营养框架

    Fig.  3  Stable isotope bio-plotting of the trophic structure in the coastal waters of Jiangsu Province in spring, summer and autumn

    图  4  春、夏、秋季江苏近海生物群落稳定同位素参数值

    Fig.  4  Community-wide metrics based on stable isotopic ratios for organisms from coastal waters of Jiangsu Province in spring, summer and autumn

    图  5  春、夏、秋3季江苏近海生物营养级对比

    —代表3个季节中共同出现的物种

    Fig.  5  The comparison of trophic level of organisms from coastal waters of Jiangsu Province in spring, summer and autumn

    ——represents the species occured in three seasons

    A1  春、夏、秋3季江苏近海主要生物数量、体长及碳、氮稳定同位素

    A1  The number, mean length and the δ13C and δ15N values of organisms in the coastal waters of Jiangsu Province in spring, summer, autumn

    学名春季夏季秋季
    数量体长/cmδ13C/‰δ15N/‰数量体长/cmδ13C/‰δ15N/‰数量体长/cmδ13C/‰δ15N/‰
    鱼类
    星康吉鳗331.37~34.63−17.97±0.5711.12±0.142−17.63±0.2911.59±0.153−16.6±0.1911.47±0.13
    银鲳318.03~23.37−16.86±0.4410.92±0.53310~13−17.58±0.5111.41±0.42313.6~14.2−15.58±0.1612.53±0.28
    带鱼335.36~37.24−17.94±0.8812.33±0.742345~74−17.06±0.4411.89±0.76321.7~25.3−16.74±0.5512.6±0.3
    中国花鲈3−16.87±0.0514.98±0.49336.7~51.0−18.05±2.3414.6±0.42
    小黄鱼316.4~17.4−17.9±0.312.11±0.83112.5−17.009.92311.6~14.5−17.23±0.2312.42±2.21
    225.55~41.05−16.97±0.2512.22±0.69418.9~42.0−17.23±0.3510.06±1.49330.5~33.3−16.13±0.4511.64±0.58
    黄鲫214.33~16.27−16.69±0.8511.15±0.14315.3~15.7−16.65±0.0410.75±0.36
    焦氏舌鳎318.18~19.42−15.83±0.411.06±0.15322.5~28.0−16.24±0.2212.21±0.7
    短吻舌鳎3−14.21±0.310.63±0.9
    长蛇鲻333.1~36.5−16.59±0.5212.98±0.22129.5−17.9412.72
    蓝点马鲛1−16.2414.06121.5−17.5310.64343.0~43.1−17.2±0.4813.44±0.12
    鳓鱼217.63~21.37−16.33±0.510.38±0.05
    斑鰶318.94~19.66−16.42±0.3813.2±0.93
    刀鲚322.2~22.7−17.22±0.469.64±0.39221.0~22.8−16.48±0.3112.02±0.72
    日本鲭421.7~23.9−17.99±0.2511.56±0.32
    细纹天竺鲷3−19.07±0.2310.89±0.06
    绿鳍马面鲀225.0~28.4−18.65±011.1±0.07
    棘头梅童鱼28.2~9.0−17.18±0.348.43±0.27
    1−16.6711.19
    430.4~34.0−22.17±4.249.16±2.48
    许氏平鲉3−18.3±0.3211.14±0.46
    龙头鱼1−16.25±09.29±0
    赤鼻棱鳀2−18.22±0.0812.13±0.69
    日本鳀1−19.6310.03
    凤鲚215~19−17.22±0.3111.11
    黄鮟鱇3−18.27±0.2313.55±0.31
    黄魟140−14.512.36
    甲壳类
    口虾蛄314.07~14.73−16.52±0.3113.14±0.72178.3~13.6−15.8±0.9910.4±1.05312.0~13.2−15.15±0.7611.11±0.18
    哈氏仿对虾37.4~8.8−15.42±0.3510.77±0.112−16.09±0.148.75±0.031−16.369.92
    中国毛虾1−19.1711.77
    脊尾白虾1−14.449.123−15.28±0.6610.38±0.45
    周氏新对虾210.8~13.4−16.62±0.089.26±0.47
    鹰爪虾3−17.09±0.0211.26±0.81
    葛氏长臂虾1−16.6511.27
    日本蟳36.66~7.34−16.24±0.911.68±0.1937.58~8.81−16.55±0.5910.6±1.2438.00~8.93−15.36±1.2511.34±0.07
    三疣梭子蟹312.84~15.56−15.99±0.7110.97±1.38316.63~18.15−16.9±0.569.21±0.27315.57~19.38−16.85±0.3710.23±0.16
    底栖动物
    脉红螺2−16.41±0.489.92±0.133−17.49±1.157.99±1.033−15.65±1.0910.33±0.41
    毛蚶3−19.70±0.779.10±1.461−19.357.524−16.65±0.558.17±1.21
    密鳞牡蛎2−18.46±0.288.22±0.291−17.089.381−17.648.69
    江珧123−19.136.861−19.865.79
    香螺3−17.19±0.48.93±0.61
    扁玉螺3−16.54±0.129.11±0.62
    沟纹鬘螺123−16.38.26
    头足类
    长蛸311.33~12.27−14.76±0.249.53±0.981−16.209.15
    火枪乌贼2−18.19±0.2411.37±0.481−13.3911.37
    短蛸3−18.15±0.3710.08±0.253−16.85±0.258.7±0.1
    曼氏无针乌贼217−16.56±0.0411.18±0.051−15.4210.39
    针乌贼3−15.52±0.1911.43±0.36
    浮游生物
    马尾藻123−24.47
    浮游动物1−19.556.30
      注:−代表物种未在该季节出现。
    下载: 导出CSV

    表  1  春、夏、秋3季生物的δ13C、δ15N值差异性分析

    Tab.  1  Difference analysis in δ13C and δ15N values for organisms in spring, summer and autumn

    平均数检验值t自由度p
    δ13C0.5332.461220.509
    δ15N0.2871.052220.637
    下载: 导出CSV

    表  2  春、夏、秋3季生物的TA、SEA和SEAC

    Tab.  2  TA, SEA and SEAC for organisms in spring, summer and autumn

    春季夏季秋季
    鱼类甲壳类底栖动物头足类鱼类甲壳类底栖动物头足类鱼类甲壳类底栖动物头足类
    TA4.5313.936.341.178.263.282.701.034.831.791.330.60
    SEA3.775.154.492.132.802.452.351.862.481.352.411.08
    SEAC4.715.555.624.262.982.943.133.722.791.694.812.16
    下载: 导出CSV
  • [1] Hairston N G, Smith F E, Slobodkin L B. Community structure, population control, and competition[J]. The American Naturalist, 1960, 94(879): 421−425. doi: 10.1086/282146
    [2] Duffy J E, Cardinale B J, France K E, et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity[J]. Ecology Letters, 2007, 10(6): 522−538. doi: 10.1111/j.1461-0248.2007.01037.x
    [3] Thompson R M, Brose U, Dunne J A, et al. Food webs: reconciling the structure and function of biodiversity[J]. Trends in Ecology & Evolution, 2012, 27(12): 689−697.
    [4] Christianen M J A, Middelburg J J, Holthuijsen S J, et al. Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale[J]. Ecology, 2017, 98(6): 1498−1512. doi: 10.1002/ecy.1837
    [5] Yen J D L, Cabral R B, Cantor M, et al. Linking structure and function in food webs: maximization of different ecological functions generates distinct food web structures[J]. Journal of Animal Ecology, 2016, 85(2): 537−547. doi: 10.1111/1365-2656.12484
    [6] Peterson B J, Fry B. Stable isotopes in ecosystem studies[J]. Annual Review of Ecology and Systematics, 1987, 18: 293−320. doi: 10.1146/annurev.es.18.110187.001453
    [7] Burdon F J, Mcintosh A R, Harding J S. Mechanisms of trophic niche compression: evidence from landscape disturbance[J]. Journal of Animal Ecology, 2020, 89(3): 730−744. doi: 10.1111/1365-2656.13142
    [8] Dauby P. The stable carbon isotope ratios in benthic food webs of the gulf of Calvi, Corsica[J]. Continental Shelf Research, 1989, 9(2): 181−195. doi: 10.1016/0278-4343(89)90091-5
    [9] Newsome S D, del Rio C M, Bearhop S, et al. A niche for isotopic ecology[J]. Frontiers in Ecology and the Environment, 2007, 5(8): 429−436. doi: 10.1890/1540-9295(2007)5[429:ANFIE]2.0.CO;2
    [10] Flaherty E A, Ben-David M. Overlap and partitioning of the ecological and isotopic niches[J]. Oikos, 2010, 119(9): 1409−1416. doi: 10.1111/j.1600-0706.2010.18259.x
    [11] Layman C A, Arrington D A, Montaña C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure[J]. Ecology, 2007, 88(1): 42−48. doi: 10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2
    [12] Layman C A, Quattrochi J P, Peyer C M, et al. Niche width collapse in a resilient top predator following ecosystem fragmentation[J]. Ecology Letters, 2007, 10(10): 937−944. doi: 10.1111/j.1461-0248.2007.01087.x
    [13] Layman C A, Araujo M S, Boucek R, et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools[J]. Biological Reviews, 2012, 87(3): 545−562. doi: 10.1111/j.1469-185X.2011.00208.x
    [14] 李云凯, 张瑞, 张硕, 等. 基于碳氮同位素技术研究重金属在春季江苏近海食物网中的累积[J]. 应用生态学报, 2019, 30(7): 2415−2425.

    Li Yunkai, Zhang Rui, Zhang Shuo, et al. Assessment of heavy metal bioaccumulation in food web of the coastal waters of Jiangsu Province, China, based on stable isotope values (δ13C and δ15N)[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2415−2425.
    [15] 刘海林, 仲霞铭, 汤建华, 等. 江苏近海鱼类群落组成和多样性的季节变化[J]. 海洋渔业, 2017, 39(1): 9−20. doi: 10.3969/j.issn.1004-2490.2017.01.002

    Liu Hailin, Zhong Xiaming, Tang Jianhua, et al. Seasonal changes of fish community composition and diversity in the offshore waters of Jiangsu[J]. Marine Fisheries, 2017, 39(1): 9−20. doi: 10.3969/j.issn.1004-2490.2017.01.002
    [16] 许星鸿, 姚海洋, 孟霄, 等. 连云港附近海域海水、表层沉积物和水产品的重金属污染及生态风险评价[J]. 海洋湖沼通报, 2019(5): 110−116.

    Xu Xinghong, Yao Haiyang, Meng Xiao, et al. Evaluation on heavy metals pollution and potential ecological risk in seawater, surface sediment and marine organisms in lianyungang sea areas[J]. Transactions of Oceanology and Limnology, 2019(5): 110−116.
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6−2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T 12763.6−2007, Specifications for oceanographic survey—Part 6: Marine biological survey[S]. Beijing: Standards Press of China, 2008.
    [18] Ricca M A, Miles A K, Anthony R G, et al. Effect of lipid extraction on analyses of stable carbon and stable nitrogen isotopes in coastal organisms of the Aleutian archipelago[J]. Canadian Journal of Zoology, 2007, 85(1): 40−48. doi: 10.1139/z06-187
    [19] 蔡德陵, 李红燕, 唐启升, 等. 黄东海生态系统食物网连续营养谱的建立: 来自碳氮稳定同位素方法的结果[J]. 中国科学 C辑:生命科学, 2005, 48(6): 531−539. doi: 10.1360/04yc0136

    Cai Deling, Li Hongyan, Tang Qisheng, et al. Establishment of trophic continuum in the food web of the Yellow Sea and East China Sea ecosystem: Insight from carbon and nitrogen stable isotopes[J]. Science in China Series C: Life Sciences, 2005, 48(6): 531−539. doi: 10.1360/04yc0136
    [20] 谢斌, 李云凯, 张虎, 等. 基于稳定同位素技术的海州湾海洋牧场食物网基础及营养结构的季节性变化[J]. 应用生态学报, 2017, 28(7): 2292−2298.

    Xie Bin, Li Yunkai, Zhang Hu, et al. Food web foundation and seasonal variation of trophic structure based on the stable isotopic technique in the marine ranching of Haizhou Bay, China[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2292−2298.
    [21] Post D M. Using stable isotopes to estimate trophic position: models, methods, and assumptions[J]. Ecology, 2002, 83(3): 703−718. doi: 10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
    [22] Jackson A L, Inger R, Parnell A C, et al. Comparing isotopic niche widths among and within communities: SIBER-stable isotope bayesian ellipses in R[J]. Journal of Animal Ecology, 2011, 80(3): 595−602. doi: 10.1111/j.1365-2656.2011.01806.x
    [23] De Smet B, Fournier J, De Troch M, et al. Integrating ecosystem engineering and food web ecology: testing the effect of biogenic reefs on the food web of a soft-bottom intertidal area[J]. PLoS One, 2015, 10(10): e0140857. doi: 10.1371/journal.pone.0140857
    [24] 高世科, 孙文, 张硕. 基于稳定同位素方法的吕泗渔场近岸海域主要生物潜在碳源及营养级分析[J]. 海洋学报, 2021, 43(6): 71−80.

    Gao Shike, Sun Wen, Zhang Shuo. The potential carbon source and trophic level analysis of main organisms in coastal water of Lüsi fishing ground, based on carbon and nitrogen stable isotope analysis[J]. Haiyang Xuebao, 2021, 43(6): 71−80.
    [25] Matthews B, Mazumder A. A critical evaluation of intrapopulation variation of δ13C and isotopic evidence of individual specialization[J]. Oecologia, 2004, 140(2): 361−371. doi: 10.1007/s00442-004-1579-2
    [26] 刘春云, 姜少玉, 宋博, 等. 烟台养马岛潮间带大型底栖动物食物网结构特征[J]. 海洋与湖沼, 2020, 51(3): 467−476.

    Liu Chunyun, Jiang Shaoyu, Song Bo, et al. Food web structure of macrobenthos in the intertidal zone of Yangma Island, Yantai, China[J]. Oceanologia et Limnologia Sinica, 2020, 51(3): 467−476.
    [27] 徐兆礼, 陈佳杰. 小黄鱼洄游路线分析[J]. 中国水产科学, 2009, 16(6): 931−940. doi: 10.3321/j.issn:1005-8737.2009.06.014

    Xu Zhaoli, Chen Jiajie. Analysis on migratory routine of Larimichthy polyactis[J]. Journal of Fishery Sciences of China, 2009, 16(6): 931−940. doi: 10.3321/j.issn:1005-8737.2009.06.014
    [28] 仲霞铭, 张虎, 汤建华, 等. 江苏近岸海域小黄鱼时空分布特征[J]. 水产学报, 2011, 35(2): 238−246.

    Zhong Xiaming, Zhang Hu, Tang Jianhua, et al. Temporal and spatial distribution of Larimichthys polyactis Bleeker resources in offshore areas of Jiangsu Province[J]. Journal of Fisheries of China, 2011, 35(2): 238−246.
    [29] Madurell T, Fanelli E, Cartes J E. Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean)[J]. Journal of Marine Systems, 2008, 71(3/4): 336−345.
    [30] Power M, Power G, Caron F, et al. Growth and dietary niche in Salvelinus Alpinus and Salvelinus Fontinalis as revealed by stable isotope analysis[J]. Environmental Biology of Fishes, 2002, 64(1/3): 75−85.
    [31] Wilson R M, Chanton J, Lewis G, et al. Isotopic variation (δ15N, δ13C, and δ34S) with body size in post-larval estuarine consumers[J]. Estuarine, Coastal and Shelf Science, 2009, 83(3): 307−312. doi: 10.1016/j.ecss.2009.04.006
    [32] Rothhaupt K O, Hanselmann A J, Yohannes E. Niche differentiation between sympatric alien aquatic crustaceans: An isotopic evidence[J]. Basic and Applied Ecology, 2014, 15(5): 453−463. doi: 10.1016/j.baae.2014.07.002
    [33] Cornelissen I J M, Vijverberg J, Van Den Beld A M, et al. Heterogeneity in food-web interactions of fish in the Mwanza Gulf, Lake Victoria: a quantitative stable isotope study[J]. Hydrobiologia, 2018, 805(1): 113−130. doi: 10.1007/s10750-017-3297-x
    [34] 纪炜炜, 姜亚洲, 阮雯, 等. 基于稳定同位素方法分析东海中北部及黄海南部春季主要鱼类的食性特征[J]. 海洋渔业, 2013, 35(4): 415−422. doi: 10.3969/j.issn.1004-2490.2013.04.006

    Ji Weiwei, Jiang Yazhou, Ruan Wen, et al. Stable isotope analysis on the feeding character of representative fishes during spring in central and northern East China Sea and south Yellow Sea[J]. Marine Fisheries, 2013, 35(4): 415−422. doi: 10.3969/j.issn.1004-2490.2013.04.006
    [35] 徐军, 张敏, 谢平. 氮稳定同位素基准的可变性及对营养级评价的影响[J]. 湖泊科学, 2010, 22(1): 8−20. doi: 10.18307/2010.0102

    Xu Jun, Zhang Min, Xie Ping. Variability of stable nitrogen isotopic baselines and its consequence for trophic modeling[J]. Journal of Lake Sciences, 2010, 22(1): 8−20. doi: 10.18307/2010.0102
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  203
  • HTML全文浏览量:  91
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-10-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回