留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪-海流-微地形耦合的沉积动力模式建立及应用

芦静 夏长水 滕涌 刘学海

芦静, 夏长水, 滕涌, 刘学海. 波浪-海流-微地形耦合的沉积动力模式建立及应用[J]. 海洋学报, 2017, 39(7): 12-25. doi: 10.3969/j.issn.0253-4193.2017.07.002
引用本文: 芦静, 夏长水, 滕涌, 刘学海. 波浪-海流-微地形耦合的沉积动力模式建立及应用[J]. 海洋学报, 2017, 39(7): 12-25. doi: 10.3969/j.issn.0253-4193.2017.07.002
Lu Jing, Xia Changshui, Teng Yong, Liu Xuehai. Developing the wave-current-microtopography coupled model of sediment dynamics and its applications[J]. Haiyang Xuebao, 2017, 39(7): 12-25. doi: 10.3969/j.issn.0253-4193.2017.07.002
Citation: Lu Jing, Xia Changshui, Teng Yong, Liu Xuehai. Developing the wave-current-microtopography coupled model of sediment dynamics and its applications[J]. Haiyang Xuebao, 2017, 39(7): 12-25. doi: 10.3969/j.issn.0253-4193.2017.07.002

波浪-海流-微地形耦合的沉积动力模式建立及应用


doi: 10.3969/j.issn.0253-4193.2017.07.002
详细信息
  • 基金项目:  国家自然科学基金项目(41072176);中央级公益性科研院所基本科研业务费专项(2014T01,2015P03);国家重点研发计划课题(2016YFC0503602,2016YFB0201103,2017YFA0604101,2017YFA0604104);留学回国人员科技活动项目择优资助。

Developing the wave-current-microtopography coupled model of sediment dynamics and its applications

More Information
  • 摘要: 沙纹微地形普遍存在于海底,沙纹的消长能改变底部应力进而影响泥沙的运移。以往研究较多侧重于波致沙纹,并已应用于波浪模式的底摩擦计算,而较少考虑波流联合效应产生的沙纹,也未将其应用于综合的水动力模式和沉积物输运模式。本文在POM水动力模式中嵌入新南威尔士大学泥沙模式,通过耦合波流共同作用的微地形模型与波流相互作用底边界层模型,发展了波浪-海流-微地形(沙纹)耦合的沉积动力模式。本文将该模式应用于澳大利亚Jervis湾,针对波主导和波流联合主导沙纹两种类型,分别进行了沙纹发展状态、几何形态的分布及悬浮泥沙的模拟。结果表明:波致沙纹比波流联合作用的沙波具有更大的波高和波长,因此当波主导时沙纹对悬浮泥沙起着关键作用。通过考虑随沙纹变化的粗糙度,相比于以往模式设置均一的粗糙度,该模型能对悬浮物浓度的骤升过程进行更精细的预测。
  • [1] Babanin A V, Young I R, Mirfenderesk H. Field and laboratory measurements of wave-bottom interaction[M]//Presented at the Coasts and Ports:Coastal Living-Living Coast. Adelaide:Institution of Engineers, 2005.
    [2] Holmedal L E, Myrhaug D. Bed load transport under irregular waves plus current from Monte Carlo simulations of parameterized models with application to ripple migration rates observed in the field[J]. Coastal Engineering, 2004, 51(2):155-72.
    [3] Ribberink J S, Al-Salem A A. Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow[J]. Journal of Geophysical Research Atmospheres, 1994, 1994(C6):12707-12728.
    [4] Werf J J V D, Ribberink J S, O'Donoghue T, et al. Modelling and measurement of sand transport processes over full-scale ripples in oscillatory flow[J]. Coastal Engineering, 2006, 53(8):657-673.
    [5] Thorne P D, Davies A G, Bell P S. Observations and analysis of sediment diffusivity profiles over sandy rippled beds under waves[J]. Journal of Geophysical Research Oceans, 2009, 114(C2):309-321.
    [6] Nielsen P. Dynamics & geometry of wave-generated ripples[J]. Journal of Geophysical Research, 1981, 86(C7):6467-6472.
    [7] Grant W D, Madsen S O. Movable bed roughness in unsteady oscillatroy flow[J]. Journal of Geophysical Research, 1982, 87(C1):469-481.
    [8] Smith G A, Babanin A V, Riedel P, et al. Introduction of a new friction routine into the SWAN model that evaluates roughness due to bedform and sediment size changes[J]. Coastal Engineering, 2011, 58(4):317-326.
    [9] Li M Z, Amos C L. Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environment[J]. Continental Shelf Research, 1998, 18(9):941-970.
    [10] Li M Z, Amos C L. SEDTRANS96:the upgraded and better calibrated sediment-transport model for continental shelves[J]. Computers & Geosciences, 2001, 27(6):619-645.
    [11] Tolman H L. Subgrid modeling of moveable-bed bottom friction in wind-wave models[J]. Coastal Engineering, 1995, 26(1/2):57-75.
    [12] Ardhuin F, Drake T G, Herbers T H C. Observations of wave-generated vortex ripples on the north carolina continental shelf[J]. Journal of Geophysical Research, 2002, 107(10):7-1-7-14.
    [13] Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research, 1979, 84(C4):1797-1808.
    [14] Grant W D, Madsen O S. The continental-shelf bottom boundary layer[J]. Fluid Mechanics Annual Reviews, 1986, 18(1):265-305.
    [15] Signell R P, Beardsley R C, Graber H C, et al. Effect of wave-current interaction on steady wind-driven circulation in narrow, shallow embayments[J]. Journal of Geophisical Research, 1990, 95(C6):9671-9678.
    [16] Mellor G L, Donelan M A, Oey L Y. A surface wave model for coupling with numerical ocean circulation models[J]. Journal of Atmospheric & Oceanic Technology, 2008, 25(10):1785-1807.
    [17] Wang X H. Tide-induced sediment resuspension and the bottom boundary layer in an idealized estuary[J]. Journal of Physical Oceanography, 2002, 32(4):3113-3131.
    [18] Wang X H, Pinardi N, Malacic V. Sediment transport and resuspension due to combined motion of wave and current in the northern Adriatic Sea during a Bora event in January 2001:A numerical modeling study[J]. Continental Shelf Research, 2007, 27(5):613-633.
    [19] Song D H, Wang X H, Cao Z Y, et al. Suspended sediment transport in the Deepwater Navigation Channel, Yangtze River Estuary, China, in the dry season 2009:2. Numerical simulations[J]. Journal of Geophysical Research, 2013, 118(10):5568-5590.
    [20] Blumberg, A F, Mellor, G L. A description of a three-dimensional coastal ocean circulation model[M]//Three-Dimensional Coastal Ocean Models. Washington, D.C.:American Geophysical Union, 1987.
    [21] Lambrechts J, Humphrey C, McKinna L, et al. Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef[J]. Estuarine, Coastal and Shelf Science, 2010, 89(2):154-162.
    [22] Nielsen P. Suspended sediment concentrations under waves[J]. Coastal Engineering, 1986, 10(1):23-31.
    [23] Wang X H. A numerical study of sediment transport in a coastal embayment during winter storms[J]. Journal of Coastal Research, 2001(34):414-427.
    [24] Holloway P E, Symonds G, Nunes V R. Observations of circulation and exchange processes in Jervis Bay, New South Wales[J]. Australian Journal of Marine and Freshwater Research, 1992, 43(6):1487-515.
    [25] CSIRO. Jervis Bay Baseline Studies Final Report[R]. CSIRO Division of Fisheries, Marmion Research Laboratories, 1994.
    [26] Miller M C, McCave I N, Komar P D. Threshold of sediment motion under unidirectional currents[J]. Sedimentology, 1977, 24(4):507-527.
    [27] Bagnold R A. An approach to the sediment transport problem from general physics[R]. Washington:U. S. Govt. Print. Off.,1966.
    [28] Gibbs R J, Matthews M D, Link D A. The relationship between sphere size and settling velocity[J]. Journal of Sedimentary Research, 1971, 41(1):7-18.
    [29] Li M Z, Amos C L. Sheet flow and large wave ripples under combined waves and currents:their field observation, model prediction and effects on boundary layer dynamics[J]. Continental Shelf Research, 1999, 19(5):637-663.
    [30] Salehi M, Strom K. Using velocimeter signal to noise ratio as a surrogate measure of suspended mud concentration[J]. Continental Shelf Research, 2011, 31(9):1020-1032.
    [31] Xavier B C, Silva I O, Guimarāes L G, et al. Estimation of suspended sediment concentration by acoustic scattering:an experimental and theoretical analysis for spherical particles[J]. Journal of Soils & Sediments, 2014, 14(7):1325-1333.
  • [1] 文明征, 陈天, 胡云壮, 李勇, 单红仙, 贾永刚.  波流作用下海底边界层沉积物再悬浮与影响因素研究 . 海洋学报, 2020, 42(3): 97-106. doi: 10.3969/j.issn.0253-4193.2020.03.009
    [2] 齐富康, 边昌伟, 徐景平.  渤海海峡沉积物输运的参数化计算 . 海洋学报, 2020, 42(3): 83-96. doi: 10.3969/j.issn.0253-4193.2020.03.008
    [3] 贾良文, 吕晓莹, 程聪, 贺紫潇.  珠江口磨刀门月际尺度地貌演变研究 . 海洋学报, 2018, 40(9): 65-77. doi: 10.3969/j.issn.0253-4193.2018.09.006
    [4] 邓智瑞, 何青, 杨清书, 林建良.  珠江口磨刀门泥沙絮凝特征 . 海洋学报, 2015, 37(9): 152-161.
    [5] 邓伟铸, 吴加学, 刘欢, 任杰, 杨名名, 张云博.  基于ADV声学泥沙反演与扩散机制分析 . 海洋学报, 2014, 36(7): 57-69. doi: 10.3969/j.issn.0253-4193.2014.04.007
    [6] 滕涌, 杨永增, 芦静, 崔廷伟.  波浪对泥沙作用的数值研究及在渤海区域的检验 . 海洋学报, 2012, 34(5): 174-182.
    [7] 鲁远征, 吴加学, 刘欢.  河口底边界层湍流观测后处理技术方法分析 . 海洋学报, 2012, 34(5): 39-49.
    [8] 于志刚, 姚鹏, 甄毓, 姚庆祯, 米铁柱, 陈洪涛.  河口及近岸海域底边界层生物地球化学过程研究进展 . 海洋学报, 2011, 33(5): 1-8.
    [9] 关皓, 周林, 王汉杰, 景丽.  有限区域大气-海浪耦合模式的建立及海表粗糙度参数化试验 . 海洋学报, 2008, 30(4): 30-38.
    [10] 戴茜, 单红仙, 孟祥梅, 夏欣, 崔文林, 贾永刚.  基于电导率测定海水悬沙含量试验研究 . 海洋学报, 2008, 30(5): 137-142.
    [11] 潘玉萍, 闵锦忠, 沙文钰.  COARE算法中3种海面空气动力粗糙度方案的比较 . 海洋学报, 2005, 27(3): 163-169.
    [12] 马超飞, 蒋兴伟, 唐军武, 王晓梅, 李铜基, 黄海军, 任敬萍.  HY-1 CCD宽波段水色要素反演算法 . 海洋学报, 2005, 27(4): 38-44.
    [13] 陈晓宏, 陈永勤, 赖国友.  珠江口悬浮泥沙迁移数值模拟 . 海洋学报, 2003, 25(2): 120-127.
    [14] 李四海, 恽才兴, 唐军武.  河口悬浮泥沙浓度Sea WiFS遥感定量模式研究 . 海洋学报, 2002, 24(2): 51-58.
    [15] 朱志夏, 韩其为, 丁平兴.  海岸悬沙运移数学模型 . 海洋学报, 2002, 24(1): 101-107.
    [16] 郭纪捷, 任来法, 李允武.  声学悬浮泥沙观测数据现场定标研究 . 海洋学报, 1998, 20(5): 120-125.
    [17] 张叔英, 李允武.  声学悬浮泥沙观测系统的研制和应用 . 海洋学报, 1998, 20(5): 114-119.
    [18] 陈涛, 李武, 吴曙初.  悬浮泥沙浓度与光谱反射率峰值波长红移的相关关系 . 海洋学报, 1994, 16(1): 38-43.
    [19] 秦崇仁.  沙纹床面摩阻引起的波高沿程衰减 . 海洋学报, 1993, 15(2): 97-107.
    [20] 吴辉碇, 杨春成, 季晓阳.  海上风的边界层模式 . 海洋学报, 1979, 1(1): 39-51.
  • 加载中
计量
  • 文章访问数:  904
  • HTML全文浏览量:  2
  • PDF下载量:  994
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-14
  • 修回日期:  2016-12-13

波浪-海流-微地形耦合的沉积动力模式建立及应用

doi: 10.3969/j.issn.0253-4193.2017.07.002
基金项目:  国家自然科学基金项目(41072176);中央级公益性科研院所基本科研业务费专项(2014T01,2015P03);国家重点研发计划课题(2016YFC0503602,2016YFB0201103,2017YFA0604101,2017YFA0604104);留学回国人员科技活动项目择优资助。

摘要: 沙纹微地形普遍存在于海底,沙纹的消长能改变底部应力进而影响泥沙的运移。以往研究较多侧重于波致沙纹,并已应用于波浪模式的底摩擦计算,而较少考虑波流联合效应产生的沙纹,也未将其应用于综合的水动力模式和沉积物输运模式。本文在POM水动力模式中嵌入新南威尔士大学泥沙模式,通过耦合波流共同作用的微地形模型与波流相互作用底边界层模型,发展了波浪-海流-微地形(沙纹)耦合的沉积动力模式。本文将该模式应用于澳大利亚Jervis湾,针对波主导和波流联合主导沙纹两种类型,分别进行了沙纹发展状态、几何形态的分布及悬浮泥沙的模拟。结果表明:波致沙纹比波流联合作用的沙波具有更大的波高和波长,因此当波主导时沙纹对悬浮泥沙起着关键作用。通过考虑随沙纹变化的粗糙度,相比于以往模式设置均一的粗糙度,该模型能对悬浮物浓度的骤升过程进行更精细的预测。

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回