留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪-海流-微地形耦合的沉积动力模式建立及应用

芦静 夏长水 滕涌 刘学海

芦静, 夏长水, 滕涌, 刘学海. 波浪-海流-微地形耦合的沉积动力模式建立及应用[J]. 海洋学报, 2017, 39(7): 12-25. doi: 10.3969/j.issn.0253-4193.2017.07.002
引用本文: 芦静, 夏长水, 滕涌, 刘学海. 波浪-海流-微地形耦合的沉积动力模式建立及应用[J]. 海洋学报, 2017, 39(7): 12-25. doi: 10.3969/j.issn.0253-4193.2017.07.002
Lu Jing, Xia Changshui, Teng Yong, Liu Xuehai. Developing the wave-current-microtopography coupled model of sediment dynamics and its applications[J]. Haiyang Xuebao, 2017, 39(7): 12-25. doi: 10.3969/j.issn.0253-4193.2017.07.002
Citation: Lu Jing, Xia Changshui, Teng Yong, Liu Xuehai. Developing the wave-current-microtopography coupled model of sediment dynamics and its applications[J]. Haiyang Xuebao, 2017, 39(7): 12-25. doi: 10.3969/j.issn.0253-4193.2017.07.002

波浪-海流-微地形耦合的沉积动力模式建立及应用

doi: 10.3969/j.issn.0253-4193.2017.07.002
基金项目: 国家自然科学基金项目(41072176);中央级公益性科研院所基本科研业务费专项(2014T01,2015P03);国家重点研发计划课题(2016YFC0503602,2016YFB0201103,2017YFA0604101,2017YFA0604104);留学回国人员科技活动项目择优资助。

Developing the wave-current-microtopography coupled model of sediment dynamics and its applications

  • 摘要: 沙纹微地形普遍存在于海底,沙纹的消长能改变底部应力进而影响泥沙的运移。以往研究较多侧重于波致沙纹,并已应用于波浪模式的底摩擦计算,而较少考虑波流联合效应产生的沙纹,也未将其应用于综合的水动力模式和沉积物输运模式。本文在POM水动力模式中嵌入新南威尔士大学泥沙模式,通过耦合波流共同作用的微地形模型与波流相互作用底边界层模型,发展了波浪-海流-微地形(沙纹)耦合的沉积动力模式。本文将该模式应用于澳大利亚Jervis湾,针对波主导和波流联合主导沙纹两种类型,分别进行了沙纹发展状态、几何形态的分布及悬浮泥沙的模拟。结果表明:波致沙纹比波流联合作用的沙波具有更大的波高和波长,因此当波主导时沙纹对悬浮泥沙起着关键作用。通过考虑随沙纹变化的粗糙度,相比于以往模式设置均一的粗糙度,该模型能对悬浮物浓度的骤升过程进行更精细的预测。
  • Babanin A V, Young I R, Mirfenderesk H. Field and laboratory measurements of wave-bottom interaction[M]//Presented at the Coasts and Ports:Coastal Living-Living Coast. Adelaide:Institution of Engineers, 2005.
    Holmedal L E, Myrhaug D. Bed load transport under irregular waves plus current from Monte Carlo simulations of parameterized models with application to ripple migration rates observed in the field[J]. Coastal Engineering, 2004, 51(2):155-72.
    Ribberink J S, Al-Salem A A. Sediment transport in oscillatory boundary layers in cases of rippled beds and sheet flow[J]. Journal of Geophysical Research Atmospheres, 1994, 1994(C6):12707-12728.
    Werf J J V D, Ribberink J S, O'Donoghue T, et al. Modelling and measurement of sand transport processes over full-scale ripples in oscillatory flow[J]. Coastal Engineering, 2006, 53(8):657-673.
    Thorne P D, Davies A G, Bell P S. Observations and analysis of sediment diffusivity profiles over sandy rippled beds under waves[J]. Journal of Geophysical Research Oceans, 2009, 114(C2):309-321.
    Nielsen P. Dynamics & geometry of wave-generated ripples[J]. Journal of Geophysical Research, 1981, 86(C7):6467-6472.
    Grant W D, Madsen S O. Movable bed roughness in unsteady oscillatroy flow[J]. Journal of Geophysical Research, 1982, 87(C1):469-481.
    Smith G A, Babanin A V, Riedel P, et al. Introduction of a new friction routine into the SWAN model that evaluates roughness due to bedform and sediment size changes[J]. Coastal Engineering, 2011, 58(4):317-326.
    Li M Z, Amos C L. Predicting ripple geometry and bed roughness under combined waves and currents in a continental shelf environment[J]. Continental Shelf Research, 1998, 18(9):941-970.
    Li M Z, Amos C L. SEDTRANS96:the upgraded and better calibrated sediment-transport model for continental shelves[J]. Computers & Geosciences, 2001, 27(6):619-645.
    Tolman H L. Subgrid modeling of moveable-bed bottom friction in wind-wave models[J]. Coastal Engineering, 1995, 26(1/2):57-75.
    Ardhuin F, Drake T G, Herbers T H C. Observations of wave-generated vortex ripples on the north carolina continental shelf[J]. Journal of Geophysical Research, 2002, 107(10):7-1-7-14.
    Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research, 1979, 84(C4):1797-1808.
    Grant W D, Madsen O S. The continental-shelf bottom boundary layer[J]. Fluid Mechanics Annual Reviews, 1986, 18(1):265-305.
    Signell R P, Beardsley R C, Graber H C, et al. Effect of wave-current interaction on steady wind-driven circulation in narrow, shallow embayments[J]. Journal of Geophisical Research, 1990, 95(C6):9671-9678.
    Mellor G L, Donelan M A, Oey L Y. A surface wave model for coupling with numerical ocean circulation models[J]. Journal of Atmospheric & Oceanic Technology, 2008, 25(10):1785-1807.
    Wang X H. Tide-induced sediment resuspension and the bottom boundary layer in an idealized estuary[J]. Journal of Physical Oceanography, 2002, 32(4):3113-3131.
    Wang X H, Pinardi N, Malacic V. Sediment transport and resuspension due to combined motion of wave and current in the northern Adriatic Sea during a Bora event in January 2001:A numerical modeling study[J]. Continental Shelf Research, 2007, 27(5):613-633.
    Song D H, Wang X H, Cao Z Y, et al. Suspended sediment transport in the Deepwater Navigation Channel, Yangtze River Estuary, China, in the dry season 2009:2. Numerical simulations[J]. Journal of Geophysical Research, 2013, 118(10):5568-5590.
    Blumberg, A F, Mellor, G L. A description of a three-dimensional coastal ocean circulation model[M]//Three-Dimensional Coastal Ocean Models. Washington, D.C.:American Geophysical Union, 1987.
    Lambrechts J, Humphrey C, McKinna L, et al. Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef[J]. Estuarine, Coastal and Shelf Science, 2010, 89(2):154-162.
    Nielsen P. Suspended sediment concentrations under waves[J]. Coastal Engineering, 1986, 10(1):23-31.
    Wang X H. A numerical study of sediment transport in a coastal embayment during winter storms[J]. Journal of Coastal Research, 2001(34):414-427.
    Holloway P E, Symonds G, Nunes V R. Observations of circulation and exchange processes in Jervis Bay, New South Wales[J]. Australian Journal of Marine and Freshwater Research, 1992, 43(6):1487-515.
    CSIRO. Jervis Bay Baseline Studies Final Report[R]. CSIRO Division of Fisheries, Marmion Research Laboratories, 1994.
    Miller M C, McCave I N, Komar P D. Threshold of sediment motion under unidirectional currents[J]. Sedimentology, 1977, 24(4):507-527.
    Bagnold R A. An approach to the sediment transport problem from general physics[R]. Washington:U. S. Govt. Print. Off.,1966.
    Gibbs R J, Matthews M D, Link D A. The relationship between sphere size and settling velocity[J]. Journal of Sedimentary Research, 1971, 41(1):7-18.
    Li M Z, Amos C L. Sheet flow and large wave ripples under combined waves and currents:their field observation, model prediction and effects on boundary layer dynamics[J]. Continental Shelf Research, 1999, 19(5):637-663.
    Salehi M, Strom K. Using velocimeter signal to noise ratio as a surrogate measure of suspended mud concentration[J]. Continental Shelf Research, 2011, 31(9):1020-1032.
    Xavier B C, Silva I O, Guimarāes L G, et al. Estimation of suspended sediment concentration by acoustic scattering:an experimental and theoretical analysis for spherical particles[J]. Journal of Soils & Sediments, 2014, 14(7):1325-1333.
  • 加载中
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  21
  • PDF下载量:  998
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-14
  • 修回日期:  2016-12-13

目录

    /

    返回文章
    返回