留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单体氨基酸δ15N在关键种鳀鱼食物链的示踪研究

刘海珍 蔡德陵 刘道辰

刘海珍,蔡德陵,刘道辰. 单体氨基酸δ15N在关键种鳀鱼食物链的示踪研究[J]. 海洋学报,2021,43(10):1–8 doi: 10.12284/hyxb2021134
引用本文: 刘海珍,蔡德陵,刘道辰. 单体氨基酸δ15N在关键种鳀鱼食物链的示踪研究[J]. 海洋学报,2021,43(10):1–8 doi: 10.12284/hyxb2021134
Liu Haizhen,Cai Deling,Liu Daochen. Study on δ15N of amino acids tracing in the food chain of a keystone species Engraulis japonicus [J]. Haiyang Xuebao,2021, 43(10):1–8 doi: 10.12284/hyxb2021134
Citation: Liu Haizhen,Cai Deling,Liu Daochen. Study on δ15N of amino acids tracing in the food chain of a keystone species Engraulis japonicus [J]. Haiyang Xuebao,2021, 43(10):1–8 doi: 10.12284/hyxb2021134

单体氨基酸δ15N在关键种鳀鱼食物链的示踪研究

doi: 10.12284/hyxb2021134
基金项目: 国家自然科学基金(40276046);国家重点基础研究发展规划资助项目(G19990437)
详细信息
    作者简介:

    刘海珍(1979-),女,山东省泰安市人,讲师,主要从事生态监测技术研究。E-mail:x0u2cg@163.com

    通讯作者:

    刘道辰,男,山东省聊城市人,副教授,主要从事环境生态监测技术研究。E-mail: 421166010@qq.com

  • 中图分类号: Q178,Q958

Study on δ15N of amino acids tracing in the food chain of a keystone species Engraulis japonicus

  • 摘要: 为了解黄、东海食物网关键种鳀鱼食物链的氨基酸营养流动特征,采用活体生物饵料对鳀鱼食物链的中下营养层次“小球藻–中华哲水蚤–鳀鱼”进行了室内受控试验研究,受控实验进行50 d后,对食物链生物组分的11种氨基酸氮稳定同位素(δ15N)与生物(组织)整体δ15N进行了分析,结果表明:在3个营养层次之间,整体δ15N和氨基酸δ15N组成差异比较大,整体δ15N的变化范围为−4.25‰~1.56‰,氨基酸δ15N的变化范围为–9.72‰~10.81‰,3种生物组分的整体δ15N和氨基酸δ15N值随食物链升高呈富集趋势。5种必需氨基酸δ15N在食物链营养层次之间分馏模式相近;必需氨基酸在3个营养层次之间呈显著正相关性(中华哲水蚤–鳀鱼肌肉:R2=0.86,p<0.05;小球藻–中华哲水蚤:R2=0.85,p<0.05),这可能说明必需氨基酸δ15N在食物链营养层次间具有相似的分馏途径。小球藻与中华哲水蚤非必需氨基酸δ15N值之间相关性较弱,而中华哲水蚤与鳀鱼肌肉组分之间非必需氨基酸的δ15N值呈显著相关性(R2=0.73,p<0.05),表明中华哲水蚤自身合成非必需氨基酸的趋势明显,而鳀鱼易于从中华哲水蚤直接摄取非必需氨基酸。本研究以期为采用氨基酸单分子δ15N开展营养生态学研究提供科学参考和依据。
  • 图  1  食物链营养层次间生物组分的单体氨基酸δ15N和整体(组织)δ15N组成

    Bulk. 整体生物(组织);Ser. 丝氨酸;Asp. 天冬氨酸;Gly. 甘氨酸;Glu. 谷氨酸;Pro. 脯氨酸;Ala. 丙氨酸;Ile. 异亮氨酸;Phe:苯丙氨酸;Thr. 苏氨酸;Val. 缬氨酸;Leu. 亮氨酸

    Fig.  1  Stable nitrogen isotopic composition of individual amino acid and bulk tissue of biological components between trophic levels in food chain

    Bulk. The whole organism (organization of organism ); Ser. Serine; Asp. Aspartic acid; Gly. Glycine; Glu. Glutamic acid; Pro. Proline; Ala. Alanine; 1ie. Isoleucine; Phe. Phenylalanine; Thr. Threonine; Val. Valine; Leu. Leucine

    图  2  食物链营养层次间生物组分氨基酸δ15N值的相关性分析

    Fig.  2  Linear correlation analysis of amino acid δ15N values of biological components between trophic levels in food chain

    表  1  关键种食物链生物样品氨基酸和生物整体(组织)的δ15N平均值

    Tab.  1  Mean δ15N values in bulk tissue and individual amino acid of biological samples in the key species food chain

    氨基酸小球藻中华哲水蚤鳀鱼肌肉
    平均值/‰标准差平均值/‰标准差平均值/‰标准差
    非必需氨基酸δ15N甘氨酸Gly−5.32±0.42−3.84±0.20−1.33±0.60
    丝氨酸Ser−9.72±0.40−5.32±0.21−3.44±0.31
    天冬氨酸Asp−1.31±0.283.43±0.114.24±0.32
    谷氨酸Glu−5.6±0.512.75±0.3110.81±0.23
    脯氨酸Pro−4.89±0.352.84±0.278.71±0.31
    丙氨酸Ala−4.53±0.55−1.21±0.326.34±0.21
    必需氨基酸δ15N苏氨酸Thr−2.32±0.431.40±0.203.24±0.59
    异亮氨酸Ile−4.19±0.190.44±0.196.46±0.35
    缬氨酸Val−2.98±0.412.84±0.278.77±0.39
    苯丙氨酸Phe−7.74±0.30−7.31±0.41−6.90±0.32
    亮氨酸Leu−6.84±0.10−2.58±0.283.53±0.07
    整体生物(组织)δ15N−4.25±0.61−1.72±0.401.56±0.41
    下载: 导出CSV

    表  2  食物链营养级之间样品整体Δ15N值和单体氨基酸Δ15N值(‰)

    Tab.  2  Bulk tissue and individual amino acid Δ15N values of the samples between trophic levels in food chain (‰)

    氨基酸Δ15NB−A值/‰Δ15NC−B值/‰
    非必需氨基酸甘氨酸Gly1.482.51
    丝氨酸Ser4.401.88
    天冬氨酸Asp4.740.81
    谷氨酸Glu8.358.06
    脯氨酸Pro7.735.87
    丙氨酸Ala3.327.55
    必需氨基酸苏氨酸Thr3.721.84
    异亮氨酸Ile4.636.02
    缬氨酸Val5.825.93
    苯丙氨酸Phe0.430.41
    亮氨酸Leu4.266.11
    整体生物(组织)Δ15N2.533.28
    下载: 导出CSV

    表  3  食物链营养层次间生物组分氨基酸δ15N值的相关性分析参数

    Tab.  3  Linear correlation analysis parameters of amino acid δ15N values of biological components between trophic levels in food chain

    必需氨基酸非必需氨基酸
    δ15NA,δ15NBδ15NB,δ15NCδ15NA,δ15NBδ15NB,δ15NC
    斜率1.57±0.181.35±0.151.01±0.241.28±0.19
    截距6.53±0.944.23±0.565.08±1.414.56±0.66
    拟合度R20.85±0.040.86±0.320.52±0.210.73±0.64
    显著性值p<0.05<0.05<0.05<0.05
    下载: 导出CSV
  • [1] Décima M, Landry M R, Popp B N. Environmental perturbation effects on baseline δ15N values and zooplankton trophic flexibility in the southern California Current Ecosystem[J]. Limnology and Oceanography, 2013, 58(2): 624−634. doi: 10.4319/lo.2013.58.2.0624
    [2] Carpenter S R, Cole J J, Pace M L, et al. Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes[J]. Ecology, 2005, 86(10): 2737−2750. doi: 10.1890/04-1282
    [3] 蔡德陵, 洪旭光, 毛兴华, 等. 崂山湾潮间带食物网结构的碳稳定同位素初步研究[J]. 海洋学报, 2001, 23(4): 41−47.

    Cai Deling, Hong Xuguang, Mao Xinghua, et al. Preliminary studies on trophic structure of tidal zone in the Laoshan Bay by using carbon stable isotopes[J]. Haiyang Xuebao, 2001, 23(4): 41−47.
    [4] McMahon K W, Fogel M L, Elsdon T S, et al. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein[J]. Journal of Animal Ecology, 2010, 79(5): 1132−1141. doi: 10.1111/j.1365-2656.2010.01722.x
    [5] O’Brien D M, Boggs C L, Fogel M L. Pollen feeding in the butterfly Heliconius charitonia: isotopic evidence for essential amino acid transfer from pollen to eggs[J]. Proceedings of the Royal Society B: Biological Sciences, 2003, 270(1533): 2631−2636. doi: 10.1098/rspb.2003.2552
    [6] Fox M D, Smith E A, Smith J E, et al. Trophic plasticity in a common reef‐building coral: Insights from δ13C analysis of essential amino acids[J]. Functional Ecology, 2019, 33 (11): 2203−205. doi: 10.3354/meps08518
    [7] 李红燕. 稳定碳、氮同位素在生态系统中的应用研究—以无定河、黄东海生态系统为例[D]. 青岛: 中国海洋大学, 2004: 16−19.

    Li Hongyan. The application of stable carbon and nitrogen isotopes to ecosystems—such as Wudinghe River and the Yellow Sea and East China Sea[D]. Qingdao: Ocean University of China, 2004: 16−19.
    [8] 于泓, 牟世芬. 氨基酸分析方法的研究进展[J]. 分析化学, 2005, 22(3): 398−404. doi: 10.3321/j.issn:0253-3820.2005.03.028

    Yu Hong, Mou Shifen. Method development for amino acid analysis[J]. Chinese Journal of Analytical Chemistry, 2005, 22(3): 398−404. doi: 10.3321/j.issn:0253-3820.2005.03.028
    [9] Mompeán C, Bode A, Gier E, et al. Bulk vs. amino acid stable N isotope estimations of metabolic status and contributions of nitrogen fixation to size–fractionated zooplankton biomass in the subtropical N Atlantic[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 114: 137−148. doi: 10.1016/j.dsr.2016.05.005
    [10] Popp B N, Graham B S, Olson R J, et al. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids[J]. Terrestrial Ecology, 2007, 1: 173−190.
    [11] Sabadel A J M, Van Oostende N, Ward B B, et al. Characterization of particulate organic matter cycling during a summer North Atlantic phytoplankton bloom using amino acid C and N stable isotopes[J]. Marine Chemistry, 2019, 214: 103670. doi: 10.1016/j.marchem.2019.103670
    [12] Hebert C E, Popp B N. Temporal trends in a biomagnifying contaminant: application of amino acid compound-specific stable nitrogen isotope analysis to the interpretation of bird mercury levels[J]. Environmental Toxicology and Chemistry, 2018, 37(5): 1458−1465. doi: 10.1002/etc.4092
    [13] 肖化云, 朱仁果, 尹祚莹, 等. 用GC–C–IRMS分析植物中20种氨基酸的氮同位素值方法研究[J]. 高校地质学报, 2013, 19(S): 436.

    Xiao Huayun, Zhu Renguo, Yin Zuoying, et al. Study on the method of analyzing the nitrogen isotope values of 20 amino acids in plants by GC–C–IRMS[J]. Ecological Journal of China Universities, 2013, 19(S): 436.
    [14] 徐春英, 李玉中, 梅旭荣, 等. 小麦籽粒氨基酸碳氮稳定同位素的测定与分析[J]. 中国农业科学, 2009, 42(2): 446−453. doi: 10.3864/j.issn.0578-1752.2009.02.008

    Xu Chunying, Li Yuzong, Mei Xurong, et al. Measurement and analysis of stable carbon and nitrogen isotope of amino acids in wheat grain[J]. Scientia Agricultura Sinica, 2009, 42(2): 446−453. doi: 10.3864/j.issn.0578-1752.2009.02.008
    [15] 赵晶晶, 张忠义, 郑能建, 等. 气相色谱–燃烧–同位素比值质谱法分析氨基酸氮稳定同位素并初步评估水生生物体营养级[J]. 分析化学, 2017, 45(3): 309−315. doi: 10.11895/j.issn.0253-3820.160594

    Zhao Jingjing, Zhang Zhongyi, Zheng Nengjian, et al. Stable nitrogen isotope analysis of amino acids by gas chromatography-combustion-isotope ratio mass spectrometry for high-resolution trophic level estimation[J]. Chinese Journal of Analytical Chemistry, 2017, 45(3): 309−315. doi: 10.11895/j.issn.0253-3820.160594
    [16] 唐启升, 苏纪兰. 中国海洋生态系统动力学研究: I. 关键科学问题与研究发展战略[M]. 北京: 科学出版社, 2000: 45-49.

    Tang Qisheng, Su Jilan. Dynamic Studies on Chinese Marine Ecosystem Ⅰ. Key Scientific Themes and Research & Development Srategy[M]. Beijing: Science Press, 2000: 45−49.
    [17] 唐启升. 海洋食物网与高营养层次营养动力学研究策略[J]. 海洋水产研究, 1999, 20(2): 1−6.

    Tang Qisheng. Strategies of research on marine food web and trophodynamics between high trophic levels[J]. Marine Fisheries Research, 1999, 20(2): 1−6.
    [18] 李峣, 赵宪勇, 张涛, 等. 黄海鳀鱼越冬洄游分布及其与物理环境的关系[J]. 海洋水产研究, 2007, 28(2): 104−112.

    Li Yao, Zhao Xianyong, Zhang Tao, et al. Wintering migration and distribution of anchovy in the Yellow Sea and its relation to physical environment[J]. Marine Fisheries Research, 2007, 28(2): 104−112.
    [19] 王延清, 李超伦, 刘梦坛, 等. 夏季黄东海中华哲水蚤种群分布、脂类含量和利用策略[J]. 生态学报, 2014, 34(16): 4632−4639.

    Wang Yanqing, Li Chaolun, Liu Mengtan, et al. Spatial distribution and lipid related energy-consumption strategies of Calanus sinicus in summer in the southern Yellow Sea and East China Sea[J]. Acta Ecologica Sinica, 2014, 34(16): 4632−4639.
    [20] 蔡德陵, 刘海珍, 宋晓红, 等. 氨基酸在黄东海食物网关键种—鳀鱼(Engraulis japonicus)食物链中的传递[J]. 生态学报, 2008, 28(2): 829−835. doi: 10.3321/j.issn:1000-0933.2008.02.046

    Cai Deling, Liu Haizhen, Song Xiaohong, et al. Transfer of amino acids in the food chain of key species anchovy (Engraulis japonicus) of the Yellow Sea and East China Sea food web[J]. Acta Ecologica Sinica, 2008, 28(2): 829−835. doi: 10.3321/j.issn:1000-0933.2008.02.046
    [21] 刘海珍, 罗琳, 蔡德陵, 等. 不同生长阶段鳀鱼肌肉营养成分分析与评价[J]. 核农学报, 2015, 29(11): 2150−2157. doi: 10.11869/j.issn.100-8551.2015.11.2150

    Liu Haizhen, Luo Lin, Cai Deling, et al. Analysis and valuation of nutrient components in the muscle of Engraulis japonicus at different growth stages[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(11): 2150−2157. doi: 10.11869/j.issn.100-8551.2015.11.2150
    [22] Meier-Augenstein W. Applied gas chromatography coupled to isotope ratio mass spectrometry[J]. Journal of Chromatography A, 1999, 842(1/2): 351−371.
    [23] Hare P E, Fogel M L, Stafford Jr T W, et al. The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins[J]. Journal of Archaeological Science, 1991, 18(3): 277−292. doi: 10.1016/0305-4403(91)90066-X
    [24] Chikaraishi Y, Ogawa N O, Kashiyama Y, et al. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids[J]. Limnology and Oceanography Methods, 2009, 7(11): 740−750. doi: 10.4319/lom.2009.7.740
    [25] Chikaraishi Y, Kashiyama Y, Ogawa N O, et al. Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies[J]. Marine Ecology Progress Series, 2007, 342: 85−90. doi: 10.3354/meps342085
    [26] Germain L R, Koch P L, Harvey J, et al. Nitrogen isotope fractionation in amino acids from harbor seals: implications for compound-specific trophic position calculations[J]. Marine Ecology Progress Series, 2013, 482: 265−277. doi: 10.3354/meps10257
    [27] Fantle M S, Dittel A I, Schwalm S M, et al. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids[J]. Oecologia, 1999, 120(3): 416−426. doi: 10.1007/s004420050874
    [28] Styring A K, Fraser R A, Bogaard A, et al. Cereal grain, rachis and pulse seed amino acid δ15N values as indicators of plant nitrogen metabolism[J]. Phytochemistry, 2014, 97: 20−29. doi: 10.1016/j.phytochem.2013.05.009
    [29] Lengeler J W, Drew G, Schlegel H G, et al. Biology of the Prokaryotes[M]. New York: Blackwell Science, 1999: 125−130.
    [30] McMahon K W, Polito M J, Abel S, et al. Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua)[J]. Ecology and Evolution, 2015, 5(6): 1278−1290. doi: 10.1002/ece3.1437
    [31] Reeds P J. Dispensable and indispensable amino acids for humans[J]. The Journal of Nutrition, 2000, 130(7): 1835S−1840S. doi: 10.1093/jn/130.7.1835S
    [32] Jim S, Jones V, Ambrose S H, et al. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis[J]. British Journal Nutrition, 2007, 95(6): 1055−1062.
    [33] Lambert J B, Grupe G. Prehistoric Human Bone[M]. Berlin: Springer–Verlag, 1993: 1−37.
    [34] Liu Haizhen, Luo Lin, Cai Deling. Stable carbon isotopic analysis of amino acids in a simplified food chain consisting of the green alga Chlorella spp., the calanoid copepod Calanus sinicus, and the Japanese anchovy (Engraulis japonicus)[J]. Canadian Journal of Zoology, 2018, 96(1): 23−30. doi: 10.1139/cjz-2016-0170
    [35] McClelland J W, Montoya J P. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton[J]. Ecology, 2002, 83(8): 2173−2180. doi: 10.1890/0012-9658(2002)083[2173:TRATNI]2.0.CO;2
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  6
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-29
  • 修回日期:  2021-05-15
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回