Spatial distribution and influencing factors of organic carbon in surface sediments along the Bohai and Yellow Sea
-
摘要: 了解海洋沉积物有机碳的分布特征及其影响因素对深入探究全球碳循环机制并应对气候变化意义重大。本研究通过渤、黄海表层沉积物碳-氮-硫元素及其同位素(TOC、TN、TS、S2‒、δ13C、δ15N、δ34S)测定,结合比表面积、色素生物标志物、热重分析等,阐明了沉积物有机碳的来源组成、分布特征及其主要约束机制。结果表明,受水动力条件控制,TOC和TN含量呈现近岸低、远岸高的分布特征,且受沉积物比表面积显著影响。同位素端元分析结果表明沉积物中混合了陆地植物、土壤和海洋藻类有机碳。其中黄河口及辽东半岛近岸海域土壤输入影响较大,有机碳碳反应指数较小;而南黄海海洋藻类影响较大,有机碳碳反应指数较高。渤海及北黄海沉积物TOC与TS的显著相关性表明有机碳降解与硫酸盐还原过程密切相关,较负的δ34S表明沉积物-水界面的硫酸盐还原-硫化物氧化-海水硫酸盐补充的循环过程,暗示了该区域有机质有氧到无氧的降解过程,其中色素降解潜在导致其与表层沉积物TOC之间相关性较弱。随着日益频发的藻华和水体缺氧效应,未来研究需进一步关注海水水体氧化还原条件与表层沉积物元素循环的耦合关系,这对理解大陆架沉积物有机碳埋藏具有重要意义。Abstract: Understanding the distribution, migration, and transformation of organic carbon in the ocean is of great significance to study the global carbon cycle and tackle climate change. Here, surface sediment samples were collected from the Bohai and the Yellow Sea. For illustrating the source composition, distribution pattern, and their constraints, material characterization such as specific surface area, total organic carbon, nitrogen, sulfur contents and their isotopes (TOC, TN, TS, S2‒, δ13C, δ15N, and δ34S), as well as pigment biomarkers and thermos-gravimetric analysis were conducted. The results showed that the TOC and TN contents were lower in the nearshore but higher in the offshore region due to stronger hydrodynamics nearshore. The specific surface area had significant impacts on the distribution of organic carbon. Three-endmember mixing model suggested that sediments near the Yellow River mouth and the shallower region along the Liaodong Peninsula in the Bohai Sea were dominated by soil-derived organic carbon with a smaller carbon reactivity index, while marine phytoplankton contributed mostly to the southern Yellow Sea with increasing carbon reactivity index. Significant correlation between TOC and TS in the Bohai and northern Yellow Sea indicated significant linkages between organic carbon degradation and sulfate reduction. The negative δ34S indicated the process of sulfate reduction-sulfide oxidation-seawater sulfate diffusion at the sediment-water interface, which hinted the oxidation of organic carbon from oxic to anoxic condition. Pigment degradation potentially resulted in its weak correlation with the TOC content. As the risk of harmful algal bloom and hypoxia is becoming more severe, it is essential to monitor the water chemistry and elemental cycling in the sediment to comprehensively understand the role of the continental shelf on organic carbon burial.
-
Key words:
- Bohai and Yellow Sea /
- Surface sediments /
- Organic carbon /
- Sulfur isotope /
- Pigment /
- Thermo-gravimetric analysis
-
图 2 渤、黄海表层沉积物的比表面积(a);TOC(b);TN(c);摩尔C/N(d);δ13C(e);δ15N(f);TS(g);S2‒(h);和δ34S(i)的空间分布
Fig. 2 Spatial distributions of specific surface area (a), TOC (b), TN (c), molar C/N ratio (d), δ13C (e), δ15N (f), TS (g), S2‒ (h), and δ34S (i) in the marine sediments from the Bohai and Yellow Sea investigated in this study
图 3 渤、黄海表层沉积物色素生物标志物、热重分析参数及来源贡献的空间分布。(a)色素(nmol/g);(b)归一化色素(nmol/g OC);(c)OMTotal(%);(d)OML(%);(e)OMR(%);(f)CRI;(g)土壤贡献;(h)陆源植物贡献;(i)海洋藻类贡献
Fig. 3 Spatial distributions of pigment, thermo-gravimetric analysis parameters, and source contributions of the surface sediments in the Bohai and Yellow Sea. (a) Pigment content (nmol/g); (b) Normalized pigment content (nmol/g OC); (c) OMTotal (%); (d) OML (%); (e) OMR (%); (f) CRI; (g) Soil fraction; (h) Terrestrial vegetation; (i) Marine fraction
图 5 (a)渤、黄海表层沉积物中TOC和TN含量关系;(b)C/N与δ13C关系;(c)TOC和比表面积(SSA)间关系。两条黑色实线分别代表有机碳载荷为1.0 mg OC/m2和0.4 mg OC/m2
Fig. 5 (a) Correlation between TOC and TN contents; (b) Relationship between molar C/N and δ13C; (c) Correlation between TOC and specific surface area (SSA): Solid lines represent organic carbon (OC) load of 1.0 mg OC/m2 and 0.4 mg OC/m2, respectively.
图 6 渤、黄海表层沉积物中(a)TOC含量与比表面积的相关关系:两条黑色实线分别代表有机碳载荷为1.0 mg OC/m2和0.4 mg OC/m2,以及(b)有机碳的δ13C和δ15N的相关关系
Fig. 6 (a) Relationship between TOC content and specific surface area and (b) between δ13C and δ15N of organic matter in the surface sediments of the Bohai and Yellow Sea. Solid lines in panel a represent organic carbon (OC) load of 1.0 mg OC/m2 and 0.4 mg OC/m2, respectively
表 1 渤、黄海表层沉积物有机碳端元分析结果
Tab. 1 Endmember mixing model results of the Bohai and Yellow Sea
海区 陆源植物(%) 土壤有机碳(%) 海洋藻类(%) 渤海 20 ± 8 54 ± 16 28 ± 11 北黄海 21 ± 7 37 ± 16 42 ± 10 南黄海 18 ± 11 39 ± 36 53 ± 25 -
[1] Gattuso J P, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastal aquatic ecosystems[J]. Annual Review of Ecology and Systematics, 1998, 29: 405−434. doi: 10.1146/annurev.ecolsys.29.1.405 [2] Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81−115. [3] Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4(1): 401−423. doi: 10.1146/annurev-marine-120709-142717 [4] Bao Rui, Van Der Voort T S, Zhao Meixun, et al. Influence of hydrodynamic processes on the fate of sedimentary organic matter on continental margins[J]. Global Biogeochemical Cycles, 2018, 32(9): 1420−1432. doi: 10.1029/2018GB005921 [5] Dai Minhan, Su Jianzhong, Zhao Yangyang, et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50(1): 593−626. doi: 10.1146/annurev-earth-032320-090746 [6] Burdige D J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467−485. doi: 10.1021/cr050347q [7] Galy V, France-Lanord C, Beyssac O, et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system[J]. Nature, 2007, 450(7168): 407−410. doi: 10.1038/nature06273 [8] Zhao B, Yao P, Bianchi T S, et al. Controls on organic carbon burial in the eastern China marginal seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608. doi: 10.1029/2020GB006608 [9] Bianchi T S, Cui Xingqian, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115: 138−155. doi: 10.1016/j.orggeochem.2017.09.008 [10] Hu Limin, Shi Xuefa, Bai Yazhi, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China[J]. Journal of Marine Systems, 2016, 155: 50−58. doi: 10.1016/j.jmarsys.2015.10.018 [11] 袁华茂, 吕晓霞, 李学刚, 等. 自然粒度下渤海沉积物中有机碳的地球化学特征[J]. 环境化学, 2003, 22(2): 115−120. doi: 10.3321/j.issn:0254-6108.2003.02.003Yuan Huamao, Lv Xiaoxia, Li Xuegang, et al. Geochemical characteristics of organic carbon in Bohai Sea sediments with natural grain size[J]. Environmental Chemistry, 2003, 22(2): 115−120. doi: 10.3321/j.issn:0254-6108.2003.02.003 [12] Yu Meng, Eglinton T I, Haghipour N, et al. Contrasting fates of terrestrial organic carbon pools in marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2021, 309: 16−30. doi: 10.1016/j.gca.2021.06.018 [13] Wu Ying, Eglinton T, Yang Liyang, et al. Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1495−1507. doi: 10.1002/2013JG002286 [14] Chen Yan, Hu Chun, Yang Guiping, et al. Variation and reactivity of organic matter in the surface sediments of the Changjiang Estuary and its adjacent East China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(1): e2020JG005765. doi: 10.1029/2020JG005765 [15] 李志成, 魏皓, 张海彦, 等. 渤海夏季底层氧亏损分布的年际差异分析[J]. 海洋与湖沼, 2021, 52(3): 601−613. doi: 10.11693/hyhz20200800227Li Zhicheng, Wei Hao, Zhang Haiyan, et al. The interannual difference in summer bottom oxygen deficiency in Bohai Sea[J]. Oceanologia et Limnologia Sinica, 2021, 52(3): 601−613. doi: 10.11693/hyhz20200800227 [16] 江涛, 徐勇, 刘传霞, 等. 渤海中部海域低氧区的发生记录[J]. 渔业科学进展, 2016, 37(4): 1−6.Jiang Tao, Xu Yong, Liu Chuanxia, et al. Report on the occurrence of hypoxia in the central Bohai Sea[J]. Progress in Fishery Sciences, 2016, 37(4): 1−6. [17] Shi Xuefa, Shen Shunxi, Yi H I, et al. Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea[J]. Chinese Science Bulletin, 2003, 48(S1): 1−7. doi: 10.1007/BF02900933 [18] Chen Nianhong, Bianchi T S, McKee B A. Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf: implications for carbon cycling in a river-dominated margin[J]. Marine Chemistry, 2005, 93(2/4): 159−177. [19] Kristensen E. Characterization of biogenic organic matter by stepwise thermogravimetry (STG)[J]. Biogeochemistry, 1990, 9(2): 135−159. doi: 10.1007/BF00692169 [20] Smeaton C, Austin W E N. Quality not quantity: prioritizing the management of sedimentary organic matter across continental shelf seas[J]. Geophysical Research Letters, 2022, 49(5): e2021GL097481. doi: 10.1029/2021GL097481 [21] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289−302. [22] Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material[J]. Earth-Science Reviews, 2006, 75(1/4): 29−57. [23] 刘军, 于志刚, 臧家业, 等. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564−578. doi: 10.11867/j.issn.1001-8166.2015.05.564Liu Jun, Yu Zhigang, Zang Jiaye, et al. Distribution and budget of organic carbon in the Bohai and Yellow Seas[J]. Advances in Earth Science, 2015, 30(5): 564−578. doi: 10.11867/j.issn.1001-8166.2015.05.564 [24] 孙书文. 渤海及邻近海域表层沉积物中木质素的分布特征及其陆源有机质示踪意义[D]. 青岛: 中国海洋大学, 2012.Sun Shuwen. The distribution characteristics of lignin in surface sediments from the Bohai Sea and adjacent sea area and its significance in tracing terrestrial organic matter[D]. Qingdao: Ocean University of China, 2012. [25] 高寒凌, 邹立, 王凯, 等. 黄、渤海沉积物中陆源脂类有机质的组成分布与转化特征[J]. 海洋学报, 2017, 39(2): 53−61.Gao Hanling, Zou Li, Wang Kai, et al. Compositional distribution and transformation of terrestrial lipid organic matter in the sediments of the Yellow Sea and Bohai Sea[J]. Haiyang Xuebao, 2017, 39(2): 53−61. [26] 高立蒙, 姚鹏, 王金鹏, 等. 渤海表层沉积物中有机碳的分布和来源[J]. 海洋学报, 2016, 38(6): 8−20. doi: 10.3969/j.issn.0253-4193.2016.06.002Gao Limeng, Yao Peng, Wang Jinpeng, et al. Distribution and sources of organic carbon in surface sediments from the Bohai Sea[J]. Haiyang Xuebao, 2016, 38(6): 8−20. doi: 10.3969/j.issn.0253-4193.2016.06.002 [27] Ramaswamy V, Gaye B, Shirodkar P V, et al. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea[J]. Marine Chemistry, 2008, 111(3/4): 137−150. [28] Yao Peng, Yu Zhigang, Bianchi T S, et al. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(7): 1407−1429. doi: 10.1002/2014JG002831 [29] Zhang Ling, Yin Kedong, Yang Yongqiang, et al. Distribution characteristics and sources of sedimentary organic matter in the Pearl River estuary and adjacent coastal waters, southern China[J]. Journal of Earth Science, 2013, 24(2): 262−273. doi: 10.1007/s12583-013-0327-0 [30] Li Xinxin, Zhang Zhaoru, Wade T L, et al. Sources and compositional distribution of organic carbon in surface sediments from the lower Pearl River to the coastal South China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(8): 2104−2117. doi: 10.1002/2017JG003981 [31] Showers W J, Angle D G. Stable isotopic characterization of organic carbon accumulation on the Amazon continental shelf[J]. Continental Shelf Research, 1986, 6(1/2): 227−244. [32] Waterson E J, Canuel E A. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13CTOC analyses[J]. Organic Geochemistry, 2008, 39(4): 422−439. doi: 10.1016/j.orggeochem.2008.01.011 [33] Wu Ying, Dittmar T, Ludwichowski K U, et al. Tracing suspended organic nitrogen from the Yangtze River catchment into the East China Sea[J]. Marine Chemistry, 2007, 107(3): 367−377. doi: 10.1016/j.marchem.2007.01.022 [34] Dan S F, Li Shengyong, Yang Bin, et al. Influence of sedimentary organic matter sources on the distribution characteristics and preservation status of organic carbon, nitrogen, phosphorus, and biogenic silica in the Daya Bay, northern South China Sea[J]. Science of the Total Environment, 2021, 783: 146899. doi: 10.1016/j.scitotenv.2021.146899 [35] Casciotti K L. Nitrogen and oxygen isotopic studies of the marine nitrogen cycle[J]. Annual Review of Marine Science, 2016, 8(1): 379−407. doi: 10.1146/annurev-marine-010213-135052 [36] Liu Ting, Wang Fan, Michalski G, et al. Using 15N, 17O, and 18O to determine nitrate sources in the Yellow River, China[J]. Environmental Science & Technology, 2013, 47(23): 13412−13421. [37] Liu Xingjian, Tang Dehao, Ge Chendong. Distribution and sources of organic carbon, nitrogen and their isotopic composition in surface sediments from the southern Yellow Sea, China[J]. Marine Pollution Bulletin, 2020, 150: 110716. doi: 10.1016/j.marpolbul.2019.110716 [38] Xia Bin, Cui Yi, Chen Bijuan, et al. Carbon and nitrogen isotopes analysis and sources of organic matter in surface sediments from the Sanggou Bay and its adjacent areas, China[J]. Acta Oceanologica Sinica, 2014, 33(12): 48−57. doi: 10.1007/s13131-014-0574-7 [39] Tao Shuqin, Eglinton T I, Montluçon D B, et al. Diverse origins and pre-depositional histories of organic matter in contemporary Chinese marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2016, 191: 70−88. doi: 10.1016/j.gca.2016.07.019 [40] Hu Limin, Shi Xuefa, Guo Zhigang, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335: 52−63. doi: 10.1016/j.margeo.2012.10.008 [41] Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271−1284. doi: 10.1016/0016-7037(94)90381-6 [42] Keil R G, Tsamakis E, Fuh C B, et al. Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation[J]. Geochimica et Cosmochimica Acta, 1994, 58(2): 879−893. doi: 10.1016/0016-7037(94)90512-6 [43] Wang Qiang, Wen Yangxue, Zhao Bo, et al. Coastal soil texture controls soil organic carbon distribution and storage of mangroves in China[J]. CATENA, 2021, 207: 105709. doi: 10.1016/j.catena.2021.105709 [44] Morse J W, Berner R A. What determines sedimentary C/S ratios?[J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1073−1077. doi: 10.1016/0016-7037(95)00024-T [45] Liu Xiting, Fike D, Li Anchun, et al. Pyrite sulfur isotopes constrained by sedimentation rates: evidence from sediments on the East China Sea inner shelf since the late Pleistocene[J]. Chemical Geology, 2019, 505: 66−75 doi: 10.1016/j.chemgeo.2018.12.014 [46] Böttcher M E, Hespenheide B, Brumsack H J, et al. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. seasonal dynamics in a temperate intertidal sandy surface sediment[J]. Isotopes in Environmental and Health Studies, 2004, 40(4): 267−283. doi: 10.1080/10256010410001678071 [47] Habicht K S, Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(24): 5351−5361. doi: 10.1016/S0016-7037(97)00311-6 [48] Szymczak-Żyla M, Kowalewska G, Louda J W. Chlorophyll-a and derivatives in recent sediments as indicators of productivity and depositional conditions[J]. Marine Chemistry, 2011, 125(1/4): 39−48. [49] Li Xinxin, Bianchi T S, Yang Zuosheng, et al. Historical trends of hypoxia in Changjiang River estuary: applications of chemical biomarkers and microfossils[J]. Journal of Marine Systems, 2011, 86(3/4): 57−68.